COMPUTER MANUAL SERIES No. 18

Model for Analysis of Energy Demand (MAED-2)

COMPUTER MANUAL SERIES No. 18

Model for Analysis of Energy Demand (MAED-2)

User's Manual

INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 2006

The originating Section of this publication in the IAEA was:

Planning and Economic Studies Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria

MODEL FOR ANALYSIS OF ENERGY DEMAND (MAED-2) IAEA, VIENNA, 2006 IAEA/CMS/18

© IAEA, 2006

Printed by the IAEA in Austria January 2006

FOREWORD

The IAEA has been supporting its Member States in the area of energy planning for sustainable development. Development and dissemination of appropriate methodologies and their computer codes are important parts of this support. This manual has been produced to facilitate the use of the MAED model: Model for Analysis of Energy Demand.

The methodology of the MAED model was originally developed by. B. Chateau and B. Lapillonne of the Institute Economique et Juridique de l'Energie (IEJE) of the University of Grenoble, France, and was presented as the MEDEE model. Since then the MEDEE model has been developed and adopted to be appropriate for modelling of various energy demand system. One such example is development of MEDEE-2 by B. Lapillonne for the needs of the International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.

The IAEA adopted MEDEE-2 model and incorporated important modifications to make it more suitable for application in the developing countries, and it was named as the MAED model. The first version of the MAED model was designed for the DOS based system, which was later on converted for the Windows system.

This manual presents the latest version of the MAED model. The most prominent feature of this version is its flexibility for representing structure of energy consumption. The model now allows country-specific representations of energy consumption patterns using the MAED methodology. The user can now disaggregate energy consumption according to the needs and/or data availability in her/his country. As such, MAED has now become a powerful tool for modelling widely diverse energy consumption patterns. This manual presents the model in details and provides guidelines for its application.

The IAEA officer responsible for this publication is Ahmed Irej Jalal of the Department of Nuclear Energy

EDITORIAL NOTE

The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries.

The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA.

CONTENTS

1	INTRO	DDUCTION	1
	1.1	Background information	
	1.2	Brief description of MAED model	
	1.3	Organization of MAED model	5
2	GENE	RAL DESCRIPTION OF MAED MODULE 1: ENERGY OF	
	DEMA	AND ANALYSIS	7
	2.1	Introduction	7
	2.2	Energy demand calculations	8
		2.2.1 Industry sector	9
		2.2.2 Transportation sector	13
		2.2.3 Service sector	14
	2.2	2.2.4 Household sector.	15
	2.3	Maximal capabilities of MAED_D program	16
3	EXEC	UTION OF MAED MODULE 1	17
	3.1	Introduction	17
	3.2	Description of MAED module 1 Excel worksheets	18
	3.3	Execution of MAED_D program	22
		3.3.1 Some preliminaries	23
		3.3.2 Entering of input data and progressive review of model results	23
		3.3.3 Worksheet "Defs"	24
		3.3.4 Worksheet "Demogr-D" (Table 1)	34
		3.3.5 Worksheet "GDP-D" (Table 2)	35
		3.3.6 Worksheets for industry sector (Tables 3 to 9)	36
		2.2.8 Workshoets for household sector (Tables 10 to 15)	47
		3.3.9 Worksheets for service sector (Tables 17 to 10)	52
		3 3 10 Worksheets showing the final results of MAED D model	00
		(Tables 20 and 21)	65
4			(0
4	INPU	I AND DERIVED VARIABLES OF MAED MODULE I	09
	4.1	Introduction	69
	4.2	Input variables	69
	4.3	Derived variables	69
5	PRINC	CIPAL EQUATIONS USED IN THE MAED MODULE 1	115
	5.1	Introduction	115
	5.2	Energy units	115
	5.3	Demographic calculations	115
	5.4	Macroeconomic calculations	116
	5.5	Energy demand calculations	119
		5.5.1 Industry sector	119
		5.5.2 Iransportation sector	136
		5.5.5 Household sector	145

		5.5.4 5.5.5	Service sector Grand totals of final energy demand for the country	153 155
6	GENER POWER	AL DE CDEMA	SCRIPTION OF MAED MODULE 2: HOURLY ELECTRIC AND CALCULATIONS	157
	6.1	Introdu	action	157
	6.2	Descri	ption of MAED Module 2 Excel worksheets	157
7	EXECU	TION (OF MAED MODULE 2	173
	7.1	Introdu	action	173
	7.2	Execut	tion of MAED_El Program	174
8	THEOR	ETICA	L BACKGROUND OF MAED MODULE 2	183
REF	ERENCE	S		187
CON				100
CON	TRIBUT	ORS T	U DRAFTING AND REVIEW	189

1 INTRODUCTION

1.1 Background information

The International Atomic Energy Agency (IAEA) has been assisting its Member States in the conduct of energy and electricity planning studies. The principal objectives of such studies are, in general, the evaluation of alternative paths/strategies for the development of energy and electricity sector to meet the future demand for energy and electricity in a given country (or a world region), and, in particular, an estimation of the role that nuclear power may play in meeting this demand. For this purpose, the IAEA has developed a set of energy models that provide a systematic framework for analyzing various issues covering social, economic, technical and environmental aspects of energy decisions. Among these models, the WASP computer program (Wien Automatic System Planning package) and a related methodology was the first model developed and introduced by the IAEA [1-6]. The WASP program is designed to find the economically optimal generation expansion policy for an electric power system within certain constraints specified by the user. Though extensively used, WASP handles only a part of the full spectrum of the analyses required for any meaningful energy studies. The other models in the IAEA's set of tools are: Model for Analysis of Energy Demand (MAED), Energy and Power Evaluation Program (ENPEP), Model for Energy Supply Systems and their General Environmental impacts (MESSAGE), Model for Financial Analysis of Electric Sector Expansion Plans (FINPLAN), and Simplified Approach for Estimating Impacts of Electricity Generation (SIMPACTS). This manual describes the MAED model.

The general approach to the MAED methodology was originally developed by Messrs. B. Chateau and B. Lapillonne (MEDEE: Modèle d'Evolution de la Demande d'Energie, Ref. 7) of the Institut Economique et Juridique de l'Energie (IEJE) of the University of Grenoble, France. In fact, MAED is closely related to a simplified version of this methodology, known as MEDEE-2 [8, 9], which was adapted by B. Lapillonne to the needs of the International Institute for Applied Systems Analysis (IIASA, Laxenburg, Austria) for carrying out studies on global energy assessment. While respecting the general structure of MEDEE-2, important modifications were introduced in MAED by the IAEA. They concern: the parameters required to be specified as input data; the equations used for calculating energy demand of some sectors; and the printed output produced by the programs.

More important, MAED includes some additional modules which may be used to convert first, the total annual electricity demand into the hourly electricity consumption expressed in terms of the load imposed on the electric power generating system in each hour of the year, and then into the so-called load duration curve of the power system, which is only a convenient representation of the load for the purpose of analyzing the expansion of the system. The additional modules above-mentioned have been developed based on well established methodologies and computer programs. In this respect, the module which calculates the hourly electric loads is based on a methodology developed by the Electricité de France (EDF), and the module used for calculating the load duration curves is based on a program (DURAT) which was originally developed for the UN-Economic Commission for Latin America (ECLA).

The first version of MAED model was developed for DOS based systems, and was distributed to over 40 countries [12]. In recent years majority of the users have shifted to Windows based PCs and are more conversant with Windows based applications. As such, the MAED software has been converted to EXCEL application. The EXCEL version not only permits working in a

familiar and convenient environment but also make the model formulation completely transparent.

The earlier versions of the MAED model, both DOS and EXECL, were built on a pre-defined structure for the economic sectors as well as for the end-use energy consumption activities. There were six economic sectors, viz. Agriculture, Construction, Mining, Manufacturing, Service and Energy, for which energy demand was calculated rather at an aggregated level. The Manufacturing sector, however, was further sub-divided into four sub-sectors. Energy demand for Transport sector was disaggregated into passenger and freight categories but the transportation modes and fuel used by each mode were limited and predefined. There was a possibility for representing various types of households but they were all grouped at the country/region level. The Service sector was also represented at an aggregate level.

This predefined structure posed difficulties in modelling of energy consumption patterns in many developing countries. For example, the Agriculture sector comprises of combination of various types of economic activities such as cropping, livestock forming, fishing and forestry. Each of these sub-sectors has different energy consumption pattern and energy intensities. Using an average of diverse energy intensities to compute energy demand of the Agriculture sector was a problem for many developing countries. Similarly, energy consumption pattern and intensities in households vary across regions with in a developing country. Computation of energy demand for households by aggregating them at regions was also a problem.

In view of these difficulties, a new version of MAED has been developed that allows the user to expand the pre-defined energy demand structure according to the needs and/or data availability. This new version presents a flexible framework to disaggregate energy demand in each of the six economic sectors. Furthermore, the energy demand in the Households sector can now be further disaggregated into Rural and Urban groups and various end-use categories in each group of households. The Service sector has some additional end-use categories, while additional modes and fuels have been added for the Transport sector. In the new flexible framework, the users:

- can define up to ten sub-sectors in each of major sectors of the economy i.e from the Agriculture sector to the Service sector mentioned above,
- can define up to fifteen modes of transportation for each of the predefined intercity and Urban (intracity) passenger transportation and freight transportation,
- can specify up to eight fuels and assign them to each transportation mode as appropriate,
- can define up to ten types of dwellings in each of the two groups of Households i.e. Rural and Urban.

The model computes energy demand at the sub-sector level and activity level.

The principal objective of this manual is to document the technical aspects of the MAED model and the important assumptions behind the proposed modelling framework. This will help the users to understand the results of the model and to realize the limitations of the analysis carried out using these results. In addition, the Manual provides guidelines for developing a country/region specific model structure, and for using the model for projecting future energy needs.

1.2 Brief description of MAED model

MAED model evaluates future energy demand based on medium- to long-term scenarios of socio-economic, technological and demographic developments. The model relates systematically the specific energy demand for producing various goods and services identified in the model, to the corresponding social, economic and technological factors that affect this demand. Energy demand is disaggregated into a large number of end-use categories; each one corresponding to a given service or to the production of a certain good. The nature and level of the demand for goods and services are a function of several determining factors, including population growth, number of inhabitants per dwelling, number of electrical appliances used in households, peoples' mobility and preferences for transportation modes, national priorities for the development of certain industries or economic sectors, the evolution of the efficiency of certain types of equipment, market penetration of new technologies or energy forms etc. The expected future trends for these determining factors, which constitute "scenarios", are exogenously introduced.

An understanding of these determining factors permits the evaluation of the various categories of energy demand for each economic sector considered. The total energy demand for each end-use category is aggregated into four main "energy consumer" sectors: Industry (including Agriculture, Construction, Mining and Manufacturing), Transportation, Service and Household. The model provides a systematic accounting framework for evaluating the effect on energy demand of a change in economics or in the standard of living of the population.

The starting point for using the MAED model is construction of base year energy consumption patterns within the model. This requires compiling and reconciling necessary data from different sources, deriving and calculating various input parameters and adjusting them to establish a base year energy balance. This helps to calibrate the model to the specific situation of the country.

The next step is developing future scenarios, specific to a country's situation and objectives. The scenarios can be sub-divided into two sub-scenarios:

- one related to the socio-economic system describing the fundamental characteristics of the social and economic evolution of the country;
- the second related to the technological factors affecting the calculation of energy demand, for example, the efficiency and market penetration potential of each alternative energy form.

The key to plausible and useful scenarios is internal consistency of assumptions, especially for social, economic and technological evolution. A good understanding of the dynamic interplay among various driving forces or determining factors is necessary. The model output, i.e. future energy demand, is just a reflection of these scenario assumptions. The evaluation of output and the modification of initial assumptions is the basic process by which reasonable results are derived.

The model focuses exclusively on energy demand, and even more specifically on demand for specified energy services. When various energy forms, i.e. electricity, fossil fuels, etc., are competing for a given end-use category of energy demand, this demand is calculated first in terms of useful energy and then converted into final energy, taking into account market penetration and the efficiency of each alternative energy source, both specified as scenario

parameters. Non-substitutable energy uses such as motor fuels for cars, electricity for specific uses (electrolysis, lighting etc.) are calculated directly in terms of final energy.

Demand for fossil fuels is therefore not broken down in terms of coal, gas or oil, because this energy supply mix largely depends on the technological possibilities of supply and relative prices of these fuels, aspects that are outside the scope of the MAED analysis. The substitution of fossil fuels by alternative "new" energy forms (i.e., solar, district heat etc.) is nevertheless estimated, due to the importance of the structural changes in energy demand that these energy forms may introduce in the future. Since these substitutions will be essentially determined by policy decisions, they are to be taken into account at the stage of formulating and writing the scenarios of development.

Special attention is given to the calculation of electricity demand, which is performed not only annually as for all other energy forms, but also on an hourly basis. These calculations in turn, can serve as input data for further analysis of the generating system using the WASP model. These calculations specifically determine the electric load imposed on the generating system, which will then permit WASP to select suitable generation technologies that match the variation in demand within a year or season.

The hourly load calculations are performed using various "modulation coefficients" which correlate changes in hourly electricity consumption with respect to average consumption. In determining hourly, daily and weekly electric load from the total annual electricity demand of the sector, the model takes into account:

- (a) The trend of the average annual growth rate of electricity demand;
- (b) The seasonal changes in electricity consumption (this variation may be reflected on a monthly or weekly basis, depending on available information);
- (c) The changes in electricity consumption owing to the type of day being considered (i.e. working days, weekends, special holidays etc.);
- (d) The hourly variation in electricity consumption during the given type of day considered.

Figure 1.1. Main inputs and outputs of MAED.

1.3 Organization of MAED model

The MAED model software is provided in two EXCEL Workbooks (files): MAED_D and MAED_EL. The MAED_D workbook contains several EXCEL worksheets devoted to various sectors, sub-sectors and end-use activities included in the model. These worksheets also serve for inputting data and viewing results. This workbook is Module 1 (Energy Demand Calculations) of the MAED model. It processes information describing the social, economic and technological scenario of development and calculates the total energy demand for the desired years. The breakdown of this demand by energy form and by economic sector considered is also provided as part of the results of the analysis.

The 2nd workbook (MAED_EL) is Module 2 (Hourly Electric Power Demand) of the MAED model. It uses the total annual demand of electricity for each sector (calculated in MAED_D) to determine the total electric power demand for each hour of the year or, in other words, the hourly electric load, which is imposed on the power system under consideration. This workbook also contains several worksheets meant to provide additional input data, executing the module and viewing the results. Both worksheets have several Microsoft Visual Basic macros for performing certain functions, explained in the subsequent chapters, and executing the computations.

2 GENERAL DESCRIPTION OF MAED MODULE 1

ENERGY DEMAND ANALYSIS

2.1 Introduction

The Module 1 of MAED model (MAED_D) is a simulation model designed for evaluating the energy demand of a country or world region in the medium and long term. It belongs to the family of MEDEE models, which are based on the scenario approach. In the MAED/MEDEE approach a "scenario" is viewed as a consistent description of a possible long-term development pattern of a country, characterized mainly in terms of long-term direction of governmental socioeconomic policy. Following this approach, the planner can make assumptions about the possible evolution of the social, economic, and technological development pattern of a country that can be anticipated over the long term from current trends and governmental objectives. The consistency of the scenario is a very important consideration of the methodology in order to guarantee attainment of sound results. Such consistency is to be exercised by the planner while formulating possible scenarios of development.

In summary the MAED D methodology comprises the following sequence of operations:

- (1) disaggregation of the total energy demand of the country or region into a large number of end-use categories in a coherent manner;
- (2) identification of the social, economic and technological parameters which affect each enduse category of the energy demand;
- (3) establishing in mathematical terms the relationships which relate energy demand and the factors affecting this demand;
- (4) developing (consistent) scenarios of social, economic and technological development for the given country;
- (5) evaluation of the energy demand resulting from each scenario; and finally
- (6) selection among all possible scenarios proposed, the "most probable" patterns of development for the country.

It should be noted that in the model, energy demand of the ultimate consumers is (as long as it is possible) always calculated in terms of the service performed ("useful" energy) as opposed to in terms of the amount of energy supplied ("final" energy). This differentiation between energy demand expressed in terms of useful and final energy permits a better study of the substitution between alternative energy forms, as well as an appraisal of the evolution of the technological improvements in the equipment and appliances used by the ultimate consumers.

Objectives of the methodology

The MAED_D model has been designed to reflect:

(a) The structural changes in the energy demand of a country in the medium and long term. This is done by means of a detailed analysis of the social, economic and technological characteristics of the given country. This approach takes especially into account the evolution of the social needs of the population, such as the demand for space heating, lighting, transportation, air conditioning, and this as a function of the distribution of population into urban and rural areas; the industrial policies of the country (development stressed on certain types of industries); and the country's policies concerning transportation, housing etc., as well as the technological development;

(b) The evolution of the potential markets of each form of final energy: electricity, fossil fuels (coal, gas, oil), solar etc.

In the model the substitution between alternative energy forms is not calculated automatically from the evolution of the price for each energy form and its corresponding coefficient of elasticity, but from an analysis made while formulating the possible scenarios of development. This could be considered as a drawback of MAED; however, one should bear in mind that in the actual economic context, characterized by continual changes of energy prices, the economists do not dispose of any proven technique, which would allow them to quantify the effect of changes in energy prices on energy demand. Besides, the considerable divergences between the results provided by many studies on price elasticity's of the demand have demonstrated that the traditional manner of conceiving elasticity's of the demand is no longer satisfactory.

Due to the reasons mentioned above, the MAED_D does not calculate the evolution of energy demand directly from the evolution of energy prices. For example, the demand for gasoline is not calculated from a hypothetical price; this price is simply taken into account implicitly while writing the scenarios of development and it serves as a reference for modulating the future evolution of the parameters involved, such as the car ownership ratio, average distance traveled by car each year etc. In this case, MAED_D simply calculates the demand for motor fuels (gasoline, diesel etc.) as a function of the socio-economic parameters specified by the scenario of development: number of automobiles, average distance driven by car etc. In other words, the prices of motor fuels are not explicitly taken into account; they simply affect the level at which the scenario developmers situate the socio-economic parameters.

2.2 Energy demand calculations

The energy demand is calculated by the model MAED_D as a function of a scenario of possible development. This scenario covers two types of scenario elements (see Figure 2.1):

- One is related to the socio-economic system and describes the fundamental characteristics of the social and economic evolution of the country;
- The second is related to the technological factors, which should be taken into account in the calculation of energy demand, for example the efficiency of each alternative energy form and its penetration into its potential markets.

MAED_D calculates the total energy demand for each end-use category, aggregating the economic sectors into four main "energy consumer" sectors: Industry (including Agriculture, Construction, Mining and Manufacturing), Transportation, Service and Household. At the same time, it provides a systematic accounting framework for evaluating the effect on the energy demand of any change of economic nature or in the standard of living of the population.

When various energy forms, i.e. electricity, fossil fuels etc., are competing for a given end-use category of energy demand, this demand is calculated, first in terms of useful energy and then converted into final energy, taking into account the penetration into the given market and the efficiency of each alternative energy source, both specified as scenario parameters.

In the model, the demand for fossil fuels is not discerned in terms of coal, gas or oil, because this largely depends on the possibilities of supply and relative prices of these fuels, aspects that are out of the scope of the analysis carried out by the use of MAED. The substitution of fossil fuels by alternative "new" energy forms (i.e. solar, district heat etc.) is nevertheless estimated, due to the importance of the structural changes in energy demand that these energy forms may produce in the future. Since these substitutions will be essentially determined by political decisions, they are to be taken into account at the stage of formulating the scenarios of development.

Non-substitutable energy uses such as motor fuels for cars, electricity for specific uses (electrolysis, lighting etc.), are calculated directly in terms of final energy.

For each end-use category, the energy demand (useful or final) is related to a set of socioeconomic and technological determining factors (macroeconomic parameters, physical quantities, etc.) whose evolution with time will determine the energy demand projections.

Six economic sectors are considered in MAED_D: Agriculture, Construction, Mining, Manufacturing, Service (including transport) and Energy. Agriculture, Construction, Mining, Manufacturing and Service sectors can be further subdivided into up to ten subsectors to allow grouping of the economic branches with similar energy intensities. Energy sector is used only to describe the GDP (Gross Domestic Product) formation. Its energy inputs, for conversions to other final energy forms, are not accounted for by the MAED model, which deals only with the final and useful energy demand projection.

The evolution of the structure of GDP formation is one of the driving factors of greater importance in the model. The GDP formation structure, expressed in terms of the share of the value added contribution to GDP by each sector, is specified directly as part of the scenario. Likewise, the shares of value added by each subsector in the total value added by each main economic sector are also specified directly as scenario elements.

As mentioned above, the energy demand is calculated separately for four major aggregated sectors: Industry, Transportation, Service and Household. The calculation of the energy demand of each of these sectors is performed in a similar manner. According to this procedure, the demand for each end-use category of energy is driven by one or several socio-economic and technological parameters, whose values are given as part of the scenarios.

2.2.1 Industry sector

In this aggregated sector are included the following economic sectors: Agriculture, Construction, Mining, and Manufacturing industries. Each main sector can be subdivided into a maximum of ten user-defined subsectors. This free split of sectors by subsectors allows for a high flexibility in reflecting the industry structure pattern of a particular country.

Generally speaking, the energy demand of each economic subsector is driven by the level of economic activity of the subsector evaluated in terms of its value added and the energy intensity of each energy form. The level of economic activity of each economic subsector is obtained from the data on total GDP and GDP structure, which are specified by the user as input.

For each sector the energy demand is calculated separately for three end-use categories: electricity for specific uses (lighting, motive power, electrolysis etc.); thermal uses (space and water heating, steam generation, furnace and direct heat); and motor fuels. Coke used in steel production and feedstock requirements for the petrochemical industry are calculated separately.

Of the end-use categories of energy demand considered, motor fuels and electricity for specific uses are non-substitutable forms. On the other hand, substitution possibilities exist for the thermal uses, in particular for the displacement of fossil fuels (mainly oil), especially in Manufacturing owing to the high level of concentration of these activities. As Agriculture, Construction, and Mining activities are generally much more decentralized, the opportunities for the substitution of fossil fuels in these sectors are also relatively small.

Figure 2.1. Scheme used to project useful and final energy demand in Module 1 of MAED.

Still, in particular situations, such opportunities may be large enough to warrant due consideration and MAED model allows for that.

In order to analyze the substitution process, the thermal energy demand in Manufacturing is broken down in three types of thermal processes: space and water heating; steam generation; and furnace and direct heat. For each Manufacturing sub sector, the scenario parameters must specify the breakdown of thermal uses into these thermal processes.

The energy intensities (i.e. the consumption of motor fuels, electricity and thermal energy per unit of value added) of each sub sector must be specified as scenario parameters due to the fact that these energy intensities are characteristics of each country and depend on the equipment used. For non-substitutable forms (i.e. electricity and motor fuels) energy intensities are specified in terms of final energy per unit of value added, and for substitutable forms (thermal uses) in terms of useful energy per unit of value added.

The thermal energy demand (for substitutable energy forms) is converted from useful into final energy by means of the scenario parameters related to the penetration into the potential market and the efficiency of each alternative energy form. For example, in order to take into account the evolution of the role played by new energy forms such as solar energy, both, the market penetration rate and the efficiency of the appliances (relative to that of the use of electricity with conventional technologies) must be specified as scenario parameters.

Table 2.1 summarizes the economic activities grouped in the Industry sector, as well as the various end-use categories of energy and the alternative energy forms considered.

Table 2.1.	Activities, energy uses and alternative energy forms considered for the Industry sector in
	MAED-D

I.	Activities							
	• Agriculture							
	Construction							
	• Mining							
	• Manufacturing							
П.	Energy uses							
	 Specific uses of electricity (lighting, motive power, electrolysis etc Motor fuels 							
	• Thermal uses*:	-space heating and hot water						
		-steam generation -furnace and direct heat						
	• Special treatment:	-coke use for pig iron steel-works						
		-feedstock requirements in the petrochemical industry						

*Note: This breakdown applies to manufacturing only. In Agriculture, Construction and Mining, thermal uses are calculated globally at the level of each sector.

As already explained, the demand for fossil fuels is not broken down in terms of coal, oil and gas because the MAED model does not take into account the supply problems associated with these fuels.

category
end-use
ms by
rgy for
ve enel
Alternativ
≓

									I	Manufa	acturing	50		
Energy forms	Agrici	alture		Consti	ruction		Mining					Therma	l uses	
	SEL	MP	TU	SEL	MP	TU	SEL	MP	TU	SEL	MP	S/WH	SG	F/DH
Fossil fuels(coal, gas, oil)			X			X			X			X	X	Х
Electricity	X		X	Х		Х	X		X	X		X	X	Х
Motor fuels		X			X			X			X			
District heating												X	X	
Cogeneration												X	X	
Soft solar systems			Х			X			X			X	Х	
Traditional fuels			X			X			X			X	Х	Х
Modern biomass			X			X			X			X	X	X
				1	1	1								

F/DH: furnace/direct heat TU: thermal uses SG: steam generation MP: motive power SEL: specific electricity uses S/WH: space/water heating Abbreviations:

2.2.2 Transportation sector

The energy demand of this sector is calculated directly in terms of final energy as a function of the total demand for transportation of passengers (passenger-kilometers) and freight (ton-kilometers), the breakdown of this demand by competing modes (car, bus, plane, truck, train etc.) and the specific energy needs and load factors of each mode. For transport of passengers, the distinction is made for urban (intracity) and intercity transport. The types and modes of transport considered in this sector are listed in Table 2.2.

The total demand for transport is calculated separately for freight and passengers according to macro-economic and life-style factors. In the case of freight transportation, the demand is calculated as a function of the GDP contribution (t-km/MU¹) from the subsectors of Agriculture, Construction, Mining, Manufacturing and Service and from Energy sector.

On the other hand, the demand for transport of passengers is determined from total population, population living in large cities, and the average intercity and intracity distance traveled per person. The latter is considered to be a scenario variable since it is certainly dependent on disposable personal income and cost of travel, and also on consumer habits. Other scenario variables for intercity passenger transportation are: car ownership and average distance driven per car per year.

Following the same aim of flexibility as for the Industry sector, up to 15 transportation modes are allowed for freight and intracity passenger transportation. For intercity passenger transportation up to 5 types of cars (using different fuel types) and 10 types of public modes (using different fuel types and having different load factors) is permitted. Each transport mode is characterized by its specific fuel consumption (energy intensity). In addition, 8 different fuels are allowed in Transportation sector. Four of them are fixed: electricity, steam coal, diesel and gasoline, and four others are left at the user's choice.

Substantial improvements in specific fuel consumption of various modes of transport may be expected in the future. Such improvements may generally be deduced from past trends.

The load factors by mode of transport are highly dependent on the transport policy of the country and therefore must be specified as scenario parameters.

In addition to the above-mentioned transportation types, the energy consumption (motor fuels) of international and military transportation is calculated as a function of total GDP.

Transport type	Maximum number of transport modes	Maximum number of fuel used		
Passenger (national level)				
- Intracity	15	8		
- Intercity	5 car types 10 public modes	8		
Freight (national level)	15	8		
International, military and other	1 (aggregated transport type)	1 (aggregated fuel type - motor fuels)		

Table 2.2.	Types and modes of tr	ransport considered for the	Transportation sector in	MAED_D
		•	•	

¹ MU: monetary unit

2.2.3 Service sector

The scenario parameters and related equations which characterize the energy consumption in the Service sector are related to the economic level of activity of this sector (subsectorial value added and labor force in the sector).

The end-use categories considered for the Service sector are: space heating, other thermal uses (essentially water heating, cooking), air conditioning, specific uses of electricity (motive power for small motors, computers, lighting etc.) and motor fuels. A summary of end-use categories and alternative energy forms considered for the Service sector is given in Table 2.3.

The energy consumption for space heating and air conditioning is calculated on the basis of the specific space heating and cooling requirements (kWh/sqm/yr), while that for other thermal uses, specific uses of electricity and motor fuels is calculated as a function of the value added and energy intensity at the subsector level within Service sector.

When the demand of a given end-use category can be provided by various energy forms (space heating, other thermal uses and air conditioning), this is calculated in terms of useful energy. The final energy demand is then calculated from the penetration into the potential market and the efficiency of each energy form (relative to that of electricity for the same use) as specified in the scenario.

Energy forms	End-use category						
	SH	OTU	AC	AP	MP		
Traditional fuels	Х	Х					
Modern biomass	Х	Х					
Electricity	Х	Х	Х	Х			
District heating	Х	Х					
Soft solar systems	X(1)	X(1)					
Fossil fuels (oil, gas, coal)	Х	Х	Х				
Motor fuels (gasoline, diesel etc.)					Х		

Table 2.3.	Energy end-use categories and alternative energy forms distinguished in the
	Service sector in MAED_D

(1) only for low-rise buildings.

Abbreviations: SH: space heating

OTU: other thermal uses

AC: air conditioning

----8

MP: motive power

AP: appliances

2.2.4 Household sector

Although the energy demand in Household and Service sectors are calculated very similarly, the calculations are executed separately due to the fact that the scenario parameters and related equations which characterize their energy consumption are not the same: in the Household sector the determining factors are of demographic nature (population, number of dwellings etc.) whereas in the Service sector they are related to the economic level of activity of this sector.

A summary of end-use categories and alternative energy forms considered for the Household sector is given in Table 2.4. The categories of energy use considered in Household are: space heating, water heating, cooking, air conditioning and secondary appliances (refrigerators, lighting, washing machines etc.).

The calculations for the Household sector are performed taking into account the living conditions of the population, i.e. the place of residence (separate calculations for urban and rural areas), and type of residence (up to 10 different types of dwellings can be defined for both urban and rural areas). This permits a better representation of the proper needs of the individuals, of their living style, as well as a more appropriate definition of the potential markets for the alternative forms of final energy.

When the demand of a given end-use category can be provided by various energy forms (space heating, water heating, cooking and air conditioning), this is calculated in terms of useful energy and not in terms of final energy. The final energy demand is then calculated from the penetration into the potential market and the efficiency of each energy form (relative to that of electricity for the same use) as specified in the scenario.

The energy consumption for secondary appliances is calculated separately for electrified dwellings, for which the use of electric appliances is assumed, and for the non-electrified dwellings, for which alternative appliances using fossil fuels are considered (kerosene lighting, refrigerators on natural gas etc.).

_	End-use category						
Energy forms	SH	WH	CK	AC	AP		
Traditional fuels	Х	Х	Х				
Modern biomass	X	Х	X				
Electricity	Х	Х	Х	Х	X		
District heating	X	Х					
Soft solar systems	Х	Х	Х				
Fossil fuels (oil, gas, coal)	X	X	X	X	X		
Abbreviations: SH: space he	ating	ing WH: water heating CK: cookin					

Table 2.4.	Energy	end-use	categories	and	alternative	energy	forms	distinguished	in	the
	househo	old sector	in MAED_	D						

Abbreviations:SH: space heating
AC: air conditioningWH: water heating
AP: appliancesCK: cooking

2.3 Maximal capabilities of MAED_D program

Some references to the maximal capabilities of MAED_D program were already made in the previous sections describing the energy demand calculation for each model sector. Table 2.5 summarizes this information for the entire program.

Parameter	Maximum allowance
Reference years	15
Subsectors of Agriculture, Construction, Mining, Manufacturing and Service sectors	10
Freight transportation modes	15
Car types for intercity passenger transportation	5
Public modes for intercity passenger transportation	10
Intracity passenger transportation modes	15
Fuels used in Transportation sector	8
out of which fuels: fixed: electricity, steam coal, diesel and gasoline	4
user-specified fuels	4
Urban dwelling types	10
Rural dwelling types	10

Table 2.5. Maximal capabilities of the MAED_D program

3 EXECUTION OF MAED MODULE 1

3.1 Introduction

The MAED model operates under the Microsoft Excel software and can be readily installed on a PC operating in Windows 95, 98, 2000 or XP environment by transferring the files MAED_D and MAED_EL from a CD-ROM or from floppy diskettes to any selected directory (e.g. c:/programs/maed) on the user's computer. As pointed out earlier, MAED_D (Module 1) is meant for calculating and projecting final energy demand, while MAED_EL (Module 2) is intended for performing hourly electric power demand calculations and working out the load duration curves for specified periods of the year. This section provides an overview of the worksheets associated with the Excel workbook MAED_D and describes the execution of Module 1 (MAED_D). The corresponding aspects of Module 2 are covered in Chapter 7.

Worksheet	Name of worksheet	Content of worksheet
No.		
i	MAED-WS	Title page of the workbook
ii	Notes	Colour code conventions
iii	Descr	Cover page (study and scenario description)
iv	TOC	Table of contents
v	Defs	Definition of the energy system
vi	Demogr-D	Demographic data
vii	GDP-D	GDP formation
viii	EnInt-D	Energy intensities for Industry sector (Agriculture,
		Construction, Mining and Manufacturing)
ix	UsEne-D	Useful energy demand calculation for Industry
		sector (Agriculture, Construction, Mining and
		Manufacturing)
Х	ACMFac-D	Penetrations and efficiencies for thermal energy in
		Agriculture, Construction and Mining sectors
xi	FIN_ACM	Final energy demand calculation for Agriculture,
		Construction and Mining sectors
xii	ManFac1-D	Useful thermal energy demand by end-uses in
		Manufacturing sector
xiii	ManFac2-D	Penetrations and efficiencies for thermal energy in
		Manufacturing sector
xiv	FIN_Ind-D	Final energy demand calculation for Manufacturing
		sector
XV	FrTrp-D	Final energy demand calculation for Freight
		transportation subsector
xvi	PassIntra-D	Final energy demand calculation for Intracity
		(urban) passenger transportation subsector

Table 3.1. List of worksheets in MS Excel workbook file MAED D

Continues

		— \ /
xvii	PassInter-D	Final energy demand calculation for Intercity
		passenger transportation subsector.
xviii	Fin_Trp-D	Final energy demand calculation for Transportation
		sector
xix	US_HH_Ur-D	Useful energy demand calculation for Urban
		household subsector
XX	US_HH_Rr-D	Useful energy demand calculation for Rural
		household subsector
xxi	FIN_HH-D	Final energy demand calculation for Household
		sector
xxii	US_SS-D	Useful energy demand calculation for Service sector
xxiii	SS_Fac-D	Penetrations and efficiencies for Service sector
xxiv	FIN_SS-D	Final energy demand calculation for Service sector
XXV	Final-D	Total final energy demand by energy form and by
		sector (in energy unit specified in cell E50)
xxvi	Final Results (User	Total final energy demand by energy form and by
	Units)	sector (in energy unit specified in cell L50)
xxvii	Convs	Energy unit conversion factor table

Table 3.1. List of worksheets in MS Excel workbook file MAED_D (Continued)

3.2 Description of MAED module 1 Excel worksheets

The MS Excel file MAED_D consists of 27 worksheets as listed in Table 3.1. Of these, 22 worksheets serve as spreadsheets for entering the input data and/or performing the model based calculations, while the others provide some general information (e.g. cover page, colour codes, conversion factors etc., used in various worksheets). Microsoft Visual Basic subroutines have been used in the Microsoft Excel environment to automatically generate the equations and tables of the model. A brief description of various worksheets follows.

(a) Worksheet "MAED-WS"

This worksheet contains the title page of the workbook file MAED_D, as shown in Figure 3.1.

Figure 3.1. Snapshot of worksheet "MAED-WS".

(b) Worksheet "Notes"

A snapshot of the worksheet "Notes" is given in Figure 3.2. This worksheet contains information about the colour code conventions used in various worksheets for making a distinction between the types of information contained in various cells, what are the data that may be entered/changed in various data worksheets and to indicate whether the cells are locked or not:

- Light blue and blue: definition of names (column A of each worksheet) and units (column B of each worksheet) of model variables and reference years for energy demand calculations. These cells are locked.
- Orange and beige: calculated data. The respective cells are locked.
- White: input data. The only cells where the user is allowed to enter or change input data.
- Red: invalid value, locked cell.
- Mauve: error, locked cell.
- Black: unused cell in Defs worksheet.

Figure 3.2. Snapshot of worksheet "Notes" in MAED_D.

(c) Worksheet "Descr"

As the various MAED_D worksheets have not any identification title for each scenario under study, this worksheet is intended to be a cover page for the output associated with a particular scenario. The user can include here the name, description and author(s) of the project (case study) as well as the name, description and date for a specific scenario. Figure 3.3 shows a snapshot of the worksheet.

(d) Worksheet "TOC"

As shown in Figure 3.4, this worksheet contains the table of contents of the workbook MAED_D. By clicking the various buttons available in this worksheet, the user can move to the corresponding worksheets of the workbook.

All the other worksheets in MAED_D have a button "TOC"; by clicking that button one can come directly into this worksheet.

Project/Scenario Description:	
Project name:	Demonstration of MAED Model
Brief project description:	
Author(s):	International Atomic Energy Agency
	Department of Nuclear Energy
	Planning and Economic Studies Section
Scenario name:	MAED_D Demonstration Case
Scenario number:	-
Brief scenario description:	The data used in this demonstration case correspond to a
	hypothetical scenario for a hypothetical country.
	They are there only for illustration purposes and will need to be replaced
	by actual country and scenario specific data by the user of the model.
Date:	December 2004

Figure 3.3. Snapshot of worksheet "TOC" in MAED_D.

able d	of Contents:		
		Data sheets	Table nr.
1	Notes	Notes	
2	Description	Descr	
3	Definitions	Defs	
4	Demography	Demogr-D	1
5	GDP formation	GDP-D	2
6	Energy intensities	EnInt-D	3
7	Useful energy demand in Industry	UsEne-D	4
8	Factors for Agriculture, Construction and Mining	ACMFac-D	5
9	Final energy demand in Agriculture, Construction and Mining	FIN_ACM	6
10	Factors for useful thermal energy demand in Manufacturing	ManFac1-D	7
11	Factors for Manufacturing	ManFac2-D	8
12	Final energy demand in Industry	FIN_Ind-D	9
13	Freight transportation	FrTrp-D	10
14	Intracity passenger transportation	PassIntra-D	11
15	Intercity passenger transportation	PassInter-D	12
16	Final energy demand in Transportation	FIN_Trp-D	13
17	Useful energy demand in Urban Household sector	US_HH_Ur-D	14
18	Useful energy demand in Rural Household sector	US_HH_Rr-D	15
19	Final energy demand in Household sector	FIN_HH-D	16
20	Useful energy demand in Service sector	US_SS-D	17
21	Factors for Service sector	SS_Fac-D	18
22	Final energy demand in Service sector	FIN_SS-D	19
23	Total final energy demand	Final-D	20
24	Total final energy demand (in user-defined units)	Final_User-D	21
25	Conversion factors	Convs	

Figure 3.4. Snapshot of worksheet "TOC" in MAED_D.

(e) Worksheet "Defs"

This worksheet contains the information defining the energy system under study and the study horizon, namely(see Figure 3.8):

Number and list of the reference years of the study;

Base year (one of the reference years);

Number and names of sub sectors for Agriculture, Construction, Mining, Manufacturing and Service sectors;

Number of freight, passenger intracity and passenger intercity transportation modes;

Name and the fuel used by each transportation mode;

Names and numeric codes of the fuel used in the entire Transportation sector;

Natural units for energy intensities associated to each fuel and conversion factors from the natural units to kWh;

Number of types, and types of dwellings in urban and rural areas;

Monetary unit (MU) selected for the study and the units applicable to all variables of the model.

A detailed description of this worksheet will be given in a subsequent subsection.

(f) Data Entry and Handling Worksheets

The 21 worksheets listed under No. vi–xxvi in Table 3.1, serve as data worksheets for entering the input data into the model, for performing the model based calculations and for showing the model results. Each worksheet consists of one or more tables. The snapshot of a typical table taken from the worksheet "US_SS-D" is shown in Figure 3.5. As in Figure 3.5, the first column of each table lists brief descriptions of various input and derived parameters while the entries in the second column specify the corresponding units of measurement. The next several columns are meant for entering/changing the input data corresponding to different reference years or for recording the results of the calculations performed by the model. In line with the contents of the worksheet "Notes" (see Figure 3.2), the cells listing the parameter description, the units of measurement and the study reference years are colored blue and locked; those containing the input data are colored white; and those containing the values of the derived parameters of the model are colored in orange and locked. For more detailed information about the definition or role of a particular parameter, one could then refer to Section 4 (Tables 4.1 and 4.2) and Section 5 of this manual.

ltem	Unit	2000	2005	2010	2015	2020	2025
Labour force in SS	[%]	45.000	46.000	47.000	48.000	49.000	50.000
Floor area per emp.	[sqm/cap]	8.000	8.400	8.800	9.200	9.600	10.000
Labour force in SS	[mill cap]	1.689	2.059	2.536	3.139	3.888	4.800
Floor area of SS	[mill sqm]	13.512	17.300	22.320	28.878	37.320	48.001

Table 17-1 Basic data for useful energy demand in Service sector

The data listed at present in Tables 1-21 of workbook MAED_D, covered by the 21 data worksheets correspond to a hypothetical scenario (Demonstration Case) for a hypothetical country. These data are only for illustration purposes and should not be considered as reference of typical values.

In the top right hand corner of each data worksheet is located a button named "TOC". Clicking this button moves one to the worksheet "TOC" (Table of contents). Likewise, one can come back to the same data worksheet by clicking the button named after that worksheet in "TOC".

Figure 3.5. Snapshot of a typical table in data worksheets of MAED_D.

(g) Worksheet "Convs"

This worksheet provides a handy set of conversion factors for converting from one type of energy unit to another type of energy unit, e.g. from TOE to kWh or vice-versa. Figure 3.6 shows the snapshot of a part of this worksheet.

Conversio	on factors:		name:	= MU_CF	G					
	to>	example: 1M	J	9.48E-01	CFG					
from	CFG	MJ	TCE	cub m	btu	toe	boe	kWh	kwyr	kcal
CFG	1	1.055	3.6E-05	0.0283168	1000	2.52E-05	0.0001847	0.2930556	3.345E-05	251.9824209
MJ	0.9478673	1	3.412E-05	0.0268406	947.8673	2.388E-05	0.0001751	0.2777778	3.171E-05	238.8468966
TCE	27779.7158	29307.6	1	786.63395	27779716	0.7	5.131	8141	0.9293379	7000000
cubm	35.3146667	37.256973	0.0012712	1	35314.667	0.0008899	0.0065227	10.349159	0.0011814	8898.675215
btu	0.001	0.001055	3.6E-08	2.832E-05	1	2.52E-08	1.847E-07	0.0002931	3.345E-08	0.251982421
toe	39685,3081	41868	1.4285714	1123.7628	39685308	1	7.33	11630	1.3276256	10000000
boe	5414.09387	5711.869	0.1948938	153.31007	5414093.9	0.1364256	1	1586.6303	0.1811222	1364256.48
kWh	3.41232227	3.6	0.0001228	0.0966262	3412.3223	8.598E-05	0.0006303	1	0.0001142	859.8462279
kwyr	29891,9431	31536	1.0760349	846.44557	29891943	0.7532244	5.521135	8760	1	7532244.196
kcal	0.00396853	0.0041868	1.429E-07	0.0001124	3,9685308	0.0000001	7.33E-07	0.001163	1.328E-07	1

Figure 3.6. Snapshot of a part of worksheet "Convs".

3.3 Execution of MAED_D program

The major steps involved in the execution of the MAED_D program are:

Preparation of the necessary input data for each selected model reference year. The selected model reference years could be (a) a set of historical years, including some recent years or (b) the base year plus a set of future years for which energy demand is desired to be projected or (c) a combination of the above two sets.

Entering the input data into various worksheets of the module MAED_D.

Checking the model results by reviewing the values of the various derived variables in different worksheets of MAED_D, as well as the detailed information assembled in the worksheets "Final-D" and "Final Results (User Unit).

Reiteration of the model run after improving the input data, if necessary.

The option (a) of step (i) involving the use of MAED_D for reproducing the historical evolution of energy demand over a certain period, is intended mainly for the purpose of data validation and debugging. However, the implementation of this option is often not practicable in view of the difficulties experienced in gathering historical data and also because of the time constraints. The alternate approach generally used for executing the data validation and debugging phase is to use MAED_D to reconstruct the energy consumption pattern of the base year so as to conform, as closely as possible, to the available disaggregated information. This is done by appropriately adjusting the values of those input parameters of the model for which concrete information is lacking.

It may be emphasized here that the base year should be chosen as close as possible to the actual year in which the study is conducted; it should be a normal year (i.e. no abrupt changes in energy use or economic growth should be observed in this year e.g. due to some natural disaster); and the data availability in this year should not pose any serious problems compared to its neighbouring years. Great care should be exercised by the model user in the selection of the base year since it is a crucial year for the study as all future energy requirements are

calculated by the program based on the energy structure established for this year and the changing scenario parameters from year to year.

3.3.1 Some preliminaries

Before proceeding with a new scenario analysis, copy the file MAED_D into a new folder and continue further work related to that scenario only in this new folder.

Set the security level of Excel program to medium (Tools/Macro/Security/Medium)². With this setting, when the file MAED_D will be opened, a dialogue box will appear on the monitor screen (see Figures 3.7 a, b) asking the user if the Microsoft Visual Basic macros present in the workbook should be enabled. Click the "Yes" or the "Enable Macros" button as the macros provided in the worksheet are necessary for the proper operation of the program.

The program MAED_D includes many internal checks for consistency of input data. For example, if the user tries to exceed the maximal capabilities of the model, a warning message will be written on the monitor screen. Sometimes, a cell corresponding to a derived variable may be colored in red (error according to the color codes), telling the user that the value of an upstream variable is not appropriate (for example, a percentage outside the interval 0-100). Nevertheless, the user must take care himself about the general consistency of the input data and of the results of the model.

Figure 3.7a. Snapshots of the dialogue box asking about the enabling of the Macros.

Figure 3.7b. Snapshot of the dialogue box after selection of Enable Macros button.

3.3.2 Entering of input data and progressive review of model results

MAED_D has some 250 input parameters whose symbolic names; definitions and units are described in Table 4.1. The user is required to collect and compile the input data

² For low security level setting the computer is not protected from potentially unsafe macros while for high security level the MAED_D macros might be automatically disabled.

corresponding to all these parameters, for each selected reference year, and enter them in the appropriate data worksheets of the file MAED_D. However, before entering these data, the user should enter the scenario description in worksheet "Descr" and set the model according to the economy structure and the energy and electricity consumption pattern of the country/region under study in worksheet "Defs".

3.3.3 Worksheet "Defs"

As mentioned in section 3.2(e), this worksheet contains several fields, which may be changed by the user to define the specific environment of a particular study. The fields with white background color are for the user to enter/modify input data (Figure 3.8).

The following categories of input data are specified in this worksheet:

Reference years for the study:

- Number of reference years (cell B6)
- Sequential list of the model years for which energy demand will be projected (cells B8:P8)
- Base year (one of the reference years) in cell B7.The most recent year for which all population, economy and energy data are available.

The reference years include at least one historical year called (called base year) and some future years for which energy demands are projected. It is preferable that the user includes more than one historical years; in which case the most recent historical year will be the base year. The program gives grey color to the background of all data fields for historical years.

To start with, the program shows "No.of Ref. Years" as 6 and 2000 as the base year as well as the first reference year (i.e. only one historical year). In row 8, the program shows 5 fields with white background color for the user to enter projection years. To add two more historical years, the user should enter "No.of Ref. Years" 8. If 2002 is the most recent historical year, then the user should enter 2002 as the base year and start the reference years from 2000 onwards.

Structure of the economic sector:

- Number of subsectors for Agriculture sector (cell B19)
- Names of subsectors of Agriculture sector (cells B20:B29)
- Number of subsectors for Construction sector (cell C19)
- Names of subsectors of Construction sector (cells C20:C29)
- Number of subsectors for Mining sector (cell D19)
- Names of subsectors of Mining sector (cells D20:D29)
- Number of subsectors for Manufacturing sector (cell E19)
- Names of subsectors of Manufacturing sector (cells E20:E29)
- Number of subsectors for Service sector (cell F19)
- Names of subsectors of Service sector (cells F20:F29)

The Energy sector is not split into sub sectors. It is used only to describe the GDP formation. Energy demand for the energy sector is for conversion of one energy form in to another for example oil-refining industry. Since these are conversion losses, the MAED model does not consider them in projection of final and useful energy demand.

For the other sectors the user can change the number of sub sectors and define their names in the appropriate cells.

Structure of the Transportation sector:

- Number of freight transportation modes (cell J17)
- Name of freight transportation modes (cells I19:I33)
- Fuel codes of freight transportation modes (cells J19:J33)
- Number of intercity passenger transportation modes (cell L17)
- Name of intercity passenger transportation modes: air plane, as public mode (cell K19), 5 types of cars (cells K20:K24) and 9 other types of public modes (cells K25:K33)
- Fuel codes of intercity passenger transportation modes (cells L19:L33)
- Number of intracity passenger transportation modes (cell N17)
- Name of intracity passenger transportation modes (cells M19:M33)
- Fuel codes of intracity passenger transportation modes (cells N19:N33)

For freight and intracity passenger transportation subsectors the user can change the number of transport modes and then define their names and fuel used by each mode in the above-mentioned cells.

For intra-city, the program differentiates between private and public modes for passenger transportation. After the first pre-defined mode of "Air plane", following five cells are reserved for defining private modes. These cells have green background color. The program assumes that there is at least one private mode of passenger transportation in these fields. When the users enter any number greater than 2 in the field for "Mode Nr.", the program skips these green cells to go to the first cell for defining the public mode of transportation. However, if there is more than one private mode of transportations for passengers, the user should enter the fuel code for that mode in the first green field and its name in the adjacent field. For deleting any mode, the user should first make the fuel code "0" and then delete the mode name. The user can either continue with entering private modes or can increase the "Mode Nr." The program take her /him to the cell for public modes.

Fuels types used in the entire Transportation sector:

- Names of fuels (cells J38:J45); the first four fuels: electricity, steam coal, diesel oil and gasoline are fixed; the user can add up to four country-specific new fuels.
- Natural units for energy intensities associated to each fuel when used for freight transportation (cells L38:L45). For example, kilogram of coal equivalent (kgce) for steam coal, litre for diesel oil, gasoline, jet fuel, alcohol etc.
- Conversion factors from the natural units (kgce, litre etc.) to kWh when the fuel is used for freight transportation (cells M38:M45)

- Natural units for energy intensities associated to each fuel when used for passenger transportation (cells N38:N45). For example, kilogram of coal equivalent (kgce) for steam coal, litre for diesel oil, gasoline, jet fuel, alcohol etc.
- Conversion factors from the natural units (kgce, litre etc.) to kWh when the fuel is used for passenger transportation (cells O38:O45)

The user can change only the natural energy unit (numerator) but not the denominator (100 tkm for freight transportation, and 100 km and 1000 seat-km for passenger transportation) of the energy intensity of the use of the respective fuel, because they are built-in in the equations of the model. After changing the natural unit, the corresponding conversion factor from the respective natural unit (kgce, litre etc.) to kWh must be also changed accordingly.

In the Demonstration case the conversion factors are calculated with the formula expressions using the heat content (kcal/kg) and density (kg/litre) of various motor fuels included in worksheet "Convs". The user can adjust the content of the respective cells of worksheet "Convs" according to the characteristics of fuels used in the country under study and use the same type of formula expressions or enter directly the appropriate conversion factors.

Structure of the Household sector:

- Number of types of urban dwellings (cell B35)
- Types of urban dwellings (cells B37:B46)
- Number of types of rural dwellings (cell D35)
- Types of rural dwellings (cells D37:D46)

The user can change the number of urban/rural dwelling types and define their names in the appropriate cells.

Units of the model variables and conversion factors:

- Symbolic name of the selected monetary unit for the study (US\$, EUR, local currency etc.) in cell A50.
- Unit for GDP (cell B50); default unit: billion US\$.
- Unit for Population and Dwelling numbers (cell C50); default magnitude: million.
- Energy unit (specified in cell E50, default: GWyr (or GWa)) in which energy demand results will be shown in Tables 4, 6 to 7, 9 to 17, 19 to 20 of MAED_D. As the energy unit for the internal calculations of the model is TWh, the conversion factor from TWh to this unit should be indicated in cell N50 either as a number or as a formula using the appropriate conversion factor from worksheet "Convs".
- User-specified energy unit (cell L50) in which the model final results will be shown in worksheet "Final results (User unit)". The default energy unit in which energy demand results are shown in other tables of MAED_D is that indicated in cell E50, but the user can ask also the final results in worksheet "Final results (User unit)" in another preferred energy unit. The conversion factor from the unit from cell E50 to the user-specified

energy unit (cell L50) for worksheet "Final results (User unit)" should be input in cell M50 either as a number or as a formula using the appropriate conversion factor from worksheet "Convs".

In row 50 of the worksheet "Defs" there are also some other units applicable to various variables of the model that will be shown in column B of Tables 1 to 20. Some of them must be consistent with the user-specified monetary unit. Therefore, if the user changes the monetary unit from the default one (US\$) to other unit (for example, EUR) some of these units must be modified accordingly (for example, change the unit for energy intensity from kWh/US\$ to kWh/EUR).

Changes in the magnitude of different units must be made cautiously because some default ratios are built-in in the equations of the model. Some examples are the following:

- The ratio between the GDP (default magnitude: billion) and population (default magnitude: million) figures must be 1000.
- The energy intensities for freight transportation (cells L38:L45) are all expressed in some natural energy unit (litre, kgce etc) per 100 t-km. The user can change the natural energy unit (numerator) and the corresponding conversion factors to kWh (cells M38:M45) but not the denominator (100 t-km).
- The main parts of energy intensities for passenger transportation are expressed in some natural energy unit (litre, kgce etc) per 100 km. The only exception is the fuel for air planes for which the energy intensity is expressed in some natural unit per 1000 seat-km. Again, the user can change the natural energy unit (numerator) and the corresponding conversion factors to kWh (cells O38:O45) but not the denominator (100 km and 1000 seat-km).

On the top of worksheet "Defs" (Figure 3.8) there are three buttons with the following respective functions:

button "**Construct the model structure**": automatic re-construction of the model structure after each change in relevant data of worksheet "Defs": number of reference years, number of subsectors of Agriculture, Construction, Mining, Manufacturing or Service sectors; number of transportation modes or fuel used in Transportation sector; number of urban or rural household types.

button "Adjust column width": adjust the column width according to the magnitude of numbers in each column;

button "Clear input data": delete all input data of the case.

After changing any input data in worksheet "Defs" the user should press the button "Construct the Working Area". The following message is displayed:

Demonstration	2	<
The model structure Press OK to continue	will be re-constructed. e, Cancel to cancel	1
ОК	Cancel	

If the **Cancel** button is pressed, the reconstruction of the model structure stops and the control is transferred back to worksheet Defs.

If the user presses the **OK** button, the tables in the sheets affected by the above-mentioned changes will be rearranged and the respective equations will be recalculated according to the new values of modified parameters: number of reference years, number of economic/energy subsectors, of transportation modes or of dwelling types.

Some change will affect only a few numbers of sectors and model's parameters; other will affect the majority of sectors. The user may be interested in keeping the maximum volume of useful old data for unaffected parameters and sectors or to delete all old data for the modified sectors/subsectors and keep only a minimum volume of old data for unaffected parameters in the non-modified sectors/subsectors. To do so he/she will answer with Yes or No the following new message:

	X
ged. Keep valid data fror	n old structure?
No	
	nged. Keep valid data fror

If the answer is **Yes**, the old valid data are kept as shown in Table 3.2 for the most frequent system changes. For **No**, all old input data for the changed sector(s) are deleted.

At the end of this procedure all Excel tables will be automatically reconfigured and energy demand will be recalculated according to the latest input data.

If for some input data or calculated variables the column width is not large enough and the program shows the ###### symbols in the respective cells, the user should press the button "Adjust column width" to enlarge the respective columns and to get the actual figures in those cells.

The button "Clear Input Data" will be used to delete all input data of an existing case.

The input data of this worksheet are internally checked and warning/error messages are displayed if some data are beyond the model capabilities or they don't observe the model constraints.
No.	Change in data	What MAED D do in each case:	
	0	Delete	Keep
-	Change the number of subsectors of AGR sector	 VA by subsector of AGR (Table 2) EI by subsector of AGR (Table 3) 	- All demography, MAN, intracity & intercity PT, HH and SER data
		- Penetrations for AGR (Table 5-1)	- VA by subsector for all other sectors (Table 2)
		- Coefficients for AUK in Table 10-1 (F1)	- Average ethciencies for ACM (Lables 5-5 to 5-7)
			- Et lot outer sectors. CON, MIN, MAIN (1906 2) - Penetrations for CON (Table 5-2) and MIN (Table 5-3)
			- Modal split of FT (Table 10-3) - EI for FT (Table 10-4)
2	Change the number of	Similarly as for AGR	Similarly as for AGR
	subsectors of CON sector		
Э	Change the number of subsectors of MIN sector	Similarly as for AGR	Similarly as for AGR
4	Change the number of	- VA by subsector of MAN (Table 2)	- All demography, ACM, intracity & intercity PT, HH and
	subsectors of MAN sector	- EI by subsector of MAN (1able 3)	SEK data
		- Share of useful thermal energy of MAN	- VA by subsector for all other sectors (Table 2)
		subsectors by thermal process category	- Efficiencies for MAN (Table 8-2)
		(Table 7)	- Modal split of FT (Table 10-3)
		- Penetrations for MAN (Table 8-1)	- EI for FT (Table 10-4)
		- Coefficients for MAN in Table 10-1 (FT)	
5	Change the number of	- VA by subsector of SER (Table 2)	- All demography, ACM, MAN, intracity & intercity PT and
	subsectors of SER sector	- Coefficients for SER in Table 10-1 (FT)	HH data
		- EI for SER (Tables 17-4 to 17-6)	- VA by subsector for all other sectors (Table 2)
		- Penetrations into Other thermal uses in	- Modal split of FT (Table 10-3)
		SER (Table 18-2)	- EI for FT (Table 10-4)
			- Basic data for SER (Table 17-1)
			- Factors for SER (Table 17-2)
			- Penetrations and efficiencies for SER, except penetrations
			into Other thermal uses (Tables 18-1, 18-3, 18-4 and 18-5)
			Continues

Table 3.2. Option "Keep valid data from old structure" when the economic/energy system changes in MAED_D program

No.	Change in data	What MAED_D do in each case:	
		Delete	Keep
9	Change the number of	- Modal split of FT (Table 10-3)	- All demography, GDP, ACM, MAN, intracity & intercity PT,
_	FT modes or the fuel	- EI of FT modes (Table 10-4)	HH and SER data
	code of a FT mode		- Generation of freight-kilometres (Table 10-1) data
7	Change the number of	- LF of public intercity PT modes	- All demography, GDP, ACM, MAN, FT & intracity PT, HH
	intercity PT modes.	(Table 12-3)	and SER data
_	Same number of car	- Split of p-km by public intercity PT mode	- General intercity PT data (Tables 12-1 and 12-2)
	types (only number of	(Table 12-7)	- LF of car types in intercity PT (Table 12-3)
	public modes changes).	- El of public intercity PT modes	- Split of p-km by car type (Table 12-5)
		(Table 12-9)	- EI of car types in intercity PT (Table 12-9)
8	Change the number of	- LF of car types in intercity PT	- All demography, GDP, ACM, MAN, FT & intracity PT, HH
	intercity PT modes and	(Table 12-3)	and SER data
	the number of car	- Split of p-km by car type (Table 12-5)	- General intercity PT data (Tables 12-1 and 12-2)
	types.	- El of car types in intercity PT	- LF of public intercity PT modes (Table 12-3)
	Same number of public	(Table 12-9)	- Split of p-km by public PT mode (Table 12-7)
	modes.		- EI of public intercity PT modes (Table 12-9)
6	Change both the	- LF for all intercity PT modes (Table 12-	- All demography, GDP, ACM, MAN, FT & intracity PT, HH
	number of intercity car	3)	and SER data
	types and public	- Split of p-km by car type (Table 12-5)	- General intercity PT data (Tables 12-1 and 12-2)
	modes.	- Modal split of p-km by public mode	
	(case 9 = case 7 + 1)	(Table 12-7)	
	case 8)	- EI of all intercity PT modes (Table 12-9)	
			Continues

(Continued)
D program
s in MAED_
stem changes
c/energy sys
the economi
ture" when t
m old struct
alid data fro
tion "Keep v
ole 3.2. Opi
Tal

	Change in data	What MAED_D do in each case:	
		Delete	Keep
	Change the fuel code of	- LF of car types in intercity PT	- All demography, GDP, ACM, MAN, FT & intracity PT, HH
	a car type in intercity	(Tables 12-3)	and SER data
	PT.	- Split of p-km by car type (Table 12-5)	- General intercity PT data (Tables 12-1 and 12-2)
	(same delete/keep as	- El of car types in intercity PT	- LF of public intercity PT modes (Tables 12-3)
	for item 8)	(Table 12-9)	- Split of p-km by public PT mode (Tables 12-7)
			- El of public intercity PT modes (Table 12-9)
	Change the fuel code of	- LF of public intercity PT mode (Table	- All demography, GDP, ACM, MAN, FT & intracity PT, HH
	a public intercity PT	12-3)	and SER data
	mode.	- Split of p-km by public intercity PT mode	- General intercity PT data (Tables 12-1 and 12-2)
	(same delete/keep as	(Table 12-7)	- LF of car types in intercity PT (Tables 12-3)
	for item 7)	- EI of public intercity PT modes (Table	- Split of p-km by car type (Tables 12-5)
		12-9)	- EI of car types in intercity PT (Table 12-9)
	Change the number of	- LF of intracity PT modes (Table 11-2)	- All demography, GDP, ACM, MAN, FT & intercity PT, HH
	intracity PT modes or		and SER data
	the fuel code of an	- Modal split of intracity PT (Table 11-3)	
	intracity PT mode	- El of intracity PT modes (Table 11-5)	- General intracity PT data (Tables 11-1)

Table 3.2 Option "Keep valid data from old structure" when the economic/energy system changes in MAED_D program (Continued)

No.	Change in data	What MAED_D do in each case:	
		Delete	Keep
13	Change the number of urban HH types	- All dwelling factors for SH and AC (Table 14-2)	- All demography, GDP, ACM, MAN, FT & PT, rural HH and SER data
		- Penetrations into SH (Table 14-5)	- Basic data for urban HH (Table 14-1)
			- All dwelling factors for CK, HW and AP (Table 14-3)
			- All efficiencies for urban HH (Tables 14-6, 14-8, 14-10 and 14-12)
			- Penetrations into HW (Table 14-7) and CK (Table 14-9) and AC (Table 14-11)
14	Change the number of rural HH types	Similarly as for urban HH	Similarly as for urban HH

Table 3.2 Option "Keep valid data from old structure" when the economic/energy system changes in MAED_D program (Continued)

Abbreviations:

AGR: Agriculture	CON: Construction	MIN: Mining	ACM: Agriculture, Construction and Mining
MAN: Manufacturing	SER: Service	FT: Freight transport	PT: Passenger transport
HH: Household	GDP: Gross domestic product	VA: Value added	EI: Energy intensity
LF: Load factor	SH: Space heating	HW: Hot water	CK: Cooking
AP: Appliances	AC: Air conditioning		

3.3.4 Worksheet "Demogr-D" (Table 1)

This worksheet is intended for handling the demographic data: population and households, living areas and labor force. It covers 7 input parameters and 5 derived parameters (see Figure 3.9). The data contained in this worksheet are required for calculating the values of the derived parameters in various other worksheets distributed throughout the workbook file MAED_D. Before entering a new set of input data into the white cells of this worksheet, the existing data corresponding to the Demonstration Case scenario may be erased, either all in one go using the button "Clear the working area" in worksheet "Defs" or row by row or one cell at a time, as felt convenient by the user.

Table 1 Der	mogra	phy					
ltem	Unit	2000	2005	2010	2015	2020	2025
Population*	[million]	19.150	21.666	24.275	26.934	29.591	32.194
Pop. gr. rate*	[%p.a.]	na**	2.500	2.300	2.100	1.900	1.700
Urban pop.	[%]	41.500	42.000	43.000	44.000	45.000	45.000
Capita/hh	[cap]	6.000	5.900	5.700	5.400	5.000	4.500
Households	[million]	1.325	1.542	1.831	2.195	2.663	3.219
Rural pop.	[%]	58.500	58.000	57.000	56.000	55.000	55.000
Capita/hh	6.800	6.600	6.300	5.900	5.400		
Households [million] 1.600			1.848	2.097	2.394	2.759	3.279
Potential If	[%]	49.000	49.200	49.400	49.550	49.650	49.700
Participating If	[%]	40.000	42.000	45.000	49.000	54.000	60.000
Active If	[million]	3.753	4.477	5.396	6.539	7.934	9.600
Share of lc. pop.	[%]	22.000	23.000	24.000	25.000	26.000	27.000
Pop. inside Ic	4.213	4.983	5.826	6.733	7.694	8.692	
*one of the time se	ries shoul	d be entered	l, the other o	calculated:			
C4*(1+D5/100)^(D3	3-C3)		(Population))			
((D4/C4)^(1/(D3-C3))-1)*100		(Population	growth rate)		
** na - not applicat	ole						

Figure 3.9. Snapshot of Table 1 of worksheet "Demogr-D".

If it is desired to enter the input data into the cells of a particular row using a formula expression, one needs to pay a little extra attention. This aspect may be clarified to some extent by considering the case of the two parameters: Population (variable name: PO) and Population growth rate (variable name: POGR) in the table shown in Figure 3.9. Here, as explained in the footnote of the table, only one of the two time series should be entered numerically and the other calculated using the relevant formula from the two expressions listed in cells A18 and A19. Please note that, irrespective of whether the formula expression is being used in row 4 or row 5, the values of PO and POGR for the first model reference year cannot be calculated using that expression. The values of both these variables for this year will have to be given numerically. This will not necessarily be the case each time some formula expression is used to enter data for some input variable. The purpose of the above remarks is simply to emphasize that special vigil is necessary whenever data entry in a row is to be made through the use of a formula rather than numerically.

If the user wants to use the same formula in a particular row as has been used in the Demonstration Case, there is no need to delete the contents of that row and re-enter the same formula expression again at the time of entering the input data. If, however, it is desired to use a different formula expression in that row or to enter the corresponding data numerically, the contents of that row may be readily deleted along with those of the rows with numerical data only, before starting the entry of new input data.

In Table 1 of the Demonstration Case (Figure 3.9), the input data for POGR has been provided numerically, while that for PO has been worked out through the use of the formula expression.

As one progresses entering the input data, one starts getting the values worked out properly for those derived variables for which all necessary data have been entered. Once the process of input data entry is complete, all the cells corresponding to the derived variables in the table will display the properly worked out data for those variables. At this stage the user should carefully check the values of the derived variables if they look reasonable; if they do not, he will need to check the corresponding input data and make the necessary corrections/adjustments. The MAED_D program makes some internal checks of input data and of derived variables and provides some error/warning messages but they are not exhaustive. Additional checks by the user of the derived variables are necessary.

Much of the general discussion covered above concerning the entry of the input data and review of the values of the derived variables will equally apply to the other data worksheets of MAED_D.

3.3.5 Worksheet "GDP-D" (Table 2)

This worksheet deals with the formation of Gross Domestic Product (GDP). It consists of a maximum of 9 tables labeled as Tables 2-1 to 2-9.

The first table, Table 2-1 (see Figure 3.10), is essentially an input table where the new scenario data are to be inserted for the parameters dealing with GDP (or GDP growth rate) and the structure of GDP formation. The parameters in rows 8 (GDP/cap) and 14 (share of Energy sector in the GDP formation) are derived parameters and accordingly, the cells belonging to these rows are coloured orange and locked. The parameter "Energy" (representing share of Energy sector in the GDP formation), which appears in row 14, is an input parameter (as defined by the variable: PYEN in Section 4, Table 4.1) but its value is not required to be entered into the data worksheet by the user. This parameter represents the balance of the share of GDP formation after the corresponding shares of all other sectors (Agriculture, Construction, Mining, Manufacturing and Service) have been taken out. It is therefore treated as a "remainder" by the program and its values are worked out automatically. This is why the corresponding row (row 14) is coloured orange and locked.

As in the previous data worksheet, two input parameters of this table, i.e. GDP and GDP growth rate may also be interlinked through a formula expression. In that case the user has to provide the input time series for only one of the parameters and the program automatically calculates the other one.

Tables 2-2 to 2-6 are meant to include the structure of value added formation by subsectors of the main sectors Agriculture, Construction, Mining, Manufacturing and Service. They will have a variable number of rows depending of the number of subsectors of the respective main sector. If the main sector is not split into subsectors, the corresponding table is missing because the share of the value added for the main sector was already given in Table 2-1. The same situation of the value added shares calculated as remainder apply also to the final rows of these tables, if the main sector has at least two subsectors. The user will come across similar situations in some other data worksheets of MAED_D as well.

Table 2-7 comprises data on various derived variables representing the monetary values for the value added by subsector and sector, calculated on the basis of the information on the total GDP and its percentage structure by sectors and subsectors provided in the previous tables. The final row of this table shows the calculated values of total GDP, which, as a check, must be identical with the input data entered/calculated in Table 2-1 (row 6). These data, together with the data in Table 2-1 are used by the program in calculating the values of the derived variables in several other worksheets of MAED_D.

Table 2-8 shows the calculated per capita monetary values for total GDP and for sector value added by the main sectors Agriculture, Construction, Mining, Manufacturing, Service and Energy.

The final table of the worksheet (Table 2-9) gives the growth rates for the value added by sector and subsector as well as for total GDP and GDP per capita. These growth rates are shown only for the second reference year onward, the first year serving only as reference for calculating the growth rates for the second year. The Tables 2-7, 2-8 and 2-9 are shown in Figure 3.11.

3.3.6 Worksheets for industry sector (Tables 3 to 9)

In MAED_D seven worksheets, namely "EnInt-D", "UsEne-D", "ACMFac-D", "FIN_ACM", "ManFac1-D", "ManFac2-D" and "FIN_Ind-D", are used to cover the energy demand analysis of the Industry sector, which is a composite sector, comprising four major economic sectors: Agriculture, Construction, Mining and Manufacturing. The term "ACM" has some times been used in the above worksheets, and will also be used in this Manual to refer to the combination of Agriculture, Construction and Mining sectors.

(a) Worksheet "EnInt-D" (Table 3)

The worksheet "EnInt-D" covers Table 3 of MAED Module 1. It comprises three sub-tables, intended for entering the input data on energy intensities of Agriculture, Construction, Mining and Manufacturing sectors with respect to motor fuels (Table 3-1), specific uses of electricity (Table 3-2) and thermal uses (Table 3-3). The energy intensities are expressed in terms of final energy per monetary unit for motor fuels and specific uses of electricity and in terms of useful energy per monetary unit for thermal uses. They are entered at subsector level and the model calculates the weighted average energy intensities at the main sector level. Figure 3.12 shows a snapshot of Table 3-1 of this worksheet.

GDP formation

т	able 2-	1	Total	GDP	and	GDP	structure	bν	main	economic	sectors
	ablez		ota	GDF	anu	GDF	suuciale	υv	an	econonic	Sectors

			,				
ltem	Unit	2000	2005	2010	2015	2020	2025
GDP*	[bill US\$]	33.550	42.819	54.131	67.780	84.063	103.263
GDP gr. rate*	[%]	na	5.000	4.800	4.600	4.400	4.200
GDP/cap	US\$	1752.0	1976.3	2229.9	2516.6	2840.8	3207.6
Agriculture	[%]	24.500	23.500	21.500	19.400	17.400	15.500
Construction	[%]	2.300	2.300	2.300	2.300	2.300	2.200
Mining	[%]	5,500	5.300	5.100	4.800	4.300	3.800
Manufacturing	%	13.000	14.000	15.200	16.100	16.800	16.900
Service	[%]	49.000	49.000	50.000	51.800	54.200	57.300
Energy	[%]	5.700	5.900	5.900	5.600	5.000	4.300

One of the time series should be entered, the other calculated: C6(1+D7/100)^(D5-C5) (GDP) ((D6/C6)^(1/(D5-C5))-1)*100 (GDP growth rate)

Table 2-2 Distribution of GDP by subsectors of Agriculture

		.,						
ltem	Unit	2000	2005	2010	2015	2020	2025	
Farming	[%]	55.000	53.000	50,500	48.000	46.000	44.000	
Livestock	[%]	25.000	26,500	28.000	29.500	30,500	32.000	
Forestry	[%]	15.500	15.000	15.000	15.000	15.000	15.000	
Fishing	[%]	4.500	5.500	6.500	7.500	8,500	9.000	
Table 2-3 Distributio	n of GDP	by subse	ectors of	Construc	tion			
ltem	Unit	2000	2005	2010	2015	2020	2025	
Buildings	[%]	20.000	21.000	22.000	23.000	24.000	25.000	
Infrastructure	[%]	80.000	79.000	78.000	77.000	76.000	75.000	
Table 2-4 Distribution of GDP by subsectors of Mining								
ltem	Unit	2000	2005	2010	2015	2020	2025	
Metalores	[%]	35.000	35.000	35.000	35.000	35.000	35,000	
Non-metal ores	[%]	40.000	40.000	40.000	40.000	40.000	40.000	
Others	[%]	25.000	25.000	25.000	25.000	25.000	25.000	
Table 2-5 Distributio	n of GDP	by subse	ectors of	Manufact	uring			
ltem	Unit	2000	2005	2010	2015	2020	2025	
Basic mat.	[%]	25.000	24.000	23.000	22.000	21.000	20.000	
Machin.&eq.	[%]	10.000	13.000	16.000	19.000	21.000	23.000	
Non-dur. goods	[%]	60.000	58.000	56.000	54.000	53.000	52.000	
Miscellan.	[%]	5.000	5.000	5.000	5.000	5.000	5.000	
Table 2-6 Distributio	n of GDP	by subse	ectors of	Service				
ltem	Unit	2000	2005	2010	2015	2020	2025	
Commer. & tour.	[%]	13.000	15.000	16.500	18.000	19.000	19.500	
Public admins.	[%]	32,500	33.000	33.500	34.000	34,500	35.000	
Finance&buss.	[%]	6.000	6.500	7.000	7.500	8.100	9.000	
Persn. serv. & others	[%]	48,500	45.500	43.000	40.500	38,400	36.500	

Figure 3.10. Snapshot of Tables 2-1 to 2-6 (input data) of worksheet "GDP-D".

Table 2-7 GDP form	ation by s	ector/sub	sector (a	b solute v	alues)		
ltem	Unit	2000	2005	2010	2015	2020	2025
Agriculture	[bill US\$]	8.220	10.063	11.638	13.149	14.627	16.006
Farming	Thill US\$1	4.521	5.333	5,877	6.312	6.728	7.043
Livestock	[bill US\$1	2.055	2.667	3.259	3.879	4.461	5.122
Forestry	[bill US\$1	1.274	1,509	1.746	1.972	2,194	2.401
Fishing	[bill US\$1	0.370	0.553	0.756	0.986	1.243	1.441
Construction	bill US\$1	0.772	0.985	1245	1.559	1.933	2 272
Buildings	[D111 0 3 \$]	0.154	0.303	0.274	0.359	0.464	0.569
Bunungs	[DHI 034]	0.134	0.207	0274	4 200	4,460	4.704
Infrastructure	[DHI US\$]	0.017	0.778	0.971	1.200	1.409	1.704
Mining		1.649	2.263	2.761	3.203	3.615	3.324
Metal ores	[ын өз\$]	0.646	0.794	0,966	1.139	1.266	1.373
Non-metal ores	[bill US\$]	0.738	0.908	1.104	1.301	1.446	1.570
Others	[bill US\$]	0.461	0.567	0.690	0.813	0.904	0.981
Manufacturing	[bill US\$]	4.362	5.995	8.228	10.913	14.123	17.451
Basic mat	[bill US\$]	1.090	1.439	1.892	2.401	2.966	3.490
Machin.&eq.	[bill US\$]	0.436	0.779	1.316	2.073	2.966	4.014
Non-dur. goods	[bill US\$]	2.617	3.477	4,608	5.893	7.485	9.075
Miscellan.	[bill US\$]	0.218	0.300	0.411	0.546	0.706	0.873
Service	Љill US\$1	16,440	20.981	27,065	35,110	45.562	59,170
Commer.& tour.	[bill US\$1	2,137	3,147	4,466	6.320	8.657	11.53
Public admins	[bill US\$1	5343	8924	9.067	11 027	15 7 19	20.700
Finance&buss	[bill US#]	0.098	4.284	4.905	2,632	2 604	5.204
Deren erer e ut	[bill US#]	0.860	0.547	1,080	2.003	47,400	0.52
Persh, serv. & others		7.973	9.547	11,038	14.220	17,490	21.59/
Energy	[DIII US\$]	1.912	2.526	3,194	3,796	4.203	4.44
Total GDP	[bill US\$]	33,550	42.819	54,131	67.780	84.063	103.263
Table 2-8 GDP form	ation by s	ector (pei	r capita):	2040	20.45	0000	2005
item		2000	2005	2010	2015	2020	2025
GUP/cap	0.5\$	1751.958	1976.291	2229,868	2516.569	2840.799	3207.556
Agriculture	US\$	429.230	464.428	479,422	488.214	494.299	497.171
Construction	US\$	40.295	45.455	51287	57.881	65.338	70.568
Mining	US\$	96.358	104.743	113.723	120.795	122,154	121.887
Manufacturing	05\$	227.755	276.681	338,940	405.168	477.254	542.077
Service	US\$	858.460	968.383	1114,934	1303.583	1539.713	1837.930
Table 2-9 GDP form	ation by s	ector/sub	sector (g	rowth rat	es):		
ltem	Unit	2000	2005	2010	2015	2020	2025
Agriculture	[%]		4,129	2,952	2.472	2,153	1.818
Farming	[%]		3.360	1,962	1.437	1.287	0.917
Livestock	[%]		5.349	4.092	3.547	2.836	2.800
Forestry	[%]		3.448	2.952	2.472	2.153	1.818
Fishing	[%]		8.393	6.450	5.447	4.742	2.989
Construction	[%]		5.000	4,800	4.600	4,400	3.278
Buildinas	[%]		6.030	5,780	5,534	5.292	4.124
Infrastructure	[%]		4736	4533	4.330	4.127	3.00
Mining	[%]		4 225	3,997	3,339	2.128	1.656
Metal ores			4005	2,007	3 220	2,129	1.854
wietar ores	[96]		H / / · · ·	, , , , , , , , , , , , , , , , , , , ,		4.140	1.000
Non-metal ores	[%]		4.225	3,997	3 330	2 129	1.854
Non-metal ores	[%]		4.225	3,997	3.339	2.128	1.655
Non-metal ores Others Manufacturing	[%] [%] [%]		4.225	3,997 3,997 3,997	3.339	2.128	1.655
Non-metal ores Others Manufacturing	[%] [%] [%] [%]		4.225 4.225 6.568	3,997 3,997 3,997 6,538	3.339 3.339 5.810	2.128 2.128 5.292	1.655 1.655 4.324
Non-metal ores Others Manufacturing Basic mat	[%] [%] [%] [%]		4.225 4.225 6.568 5.701	3,997 3,997 3,997 6,538 5,635	3.339 3.339 5.810 4.874	2.128 2.128 5.292 4.317	1.650 1.650 4.324 3.311
Non-metal ores Others Manufacturing Basic mat Machin.&eq.	[%] [%] [%] [%] [%]		4.225 4.225 4.225 6.568 5.701 12.309	3,997 3,997 3,997 6,538 5,635 11,055	3.339 3.339 5.810 4.874 9.510	2.128 2.128 5.292 4.317 7.421	1.650 1.650 4.324 3.311 6.230
Non-metal ores Others Manufacturing Basic mat Machin.&eq. Non-dur. goods	[%] [%] [%] [%] [%] [%]		4,225 4,225 4,225 6,568 5,701 12,309 5,848	3,997 3,997 3,997 6,538 5,635 11,055 5,793	3.339 3.339 5.810 4.874 9.510 5.044	2.128 2.128 5.292 4.317 7.421 4.900	1.650 1.650 4.320 3.311 6.230 3.927
Non-metal ores Others Manuf act uring Basic mat Machin.&eq. Non-dur. goods Miscellan.	[%] [%] [%] [%] [%] [%]		4,225 4,225 6,568 5,701 12,309 5,848 6,568	3,997 3,997 3,997 6,538 5,635 11,055 5,793 6,538	3.339 3.339 5.810 4.874 9.510 5.044 5.810	2.128 2.128 5.292 4.317 7.421 4.900 5.292	1.650 1.650 4.320 3.31 ¹ 6.230 3.927 4.32
Non-metal ores Others Manufacturing Basic mat Machin.&eq. Non-dur. goods Miscellan. Service	[%] [%] [%6] [%6] [%6] [%6] [%6]		4.225 4.225 6.568 5.701 12.309 5.848 6.568 5.000	3,997 3,997 6,538 6,538 5,636 11,055 5,793 6,538 5,224	3.339 3.339 5.810 4.874 9.510 5.044 5.810 5.810	2.128 2.128 5.292 4.317 7.421 4.900 5.292 5.350	1.650 1.650 4.324 3.311 6.238 3.927 4.324 5.368
Non-metal ores Others Manufacturing Basic mat Machin.&eq. Non-dur. goods Miscellan. Service Commer.& tour.	[%] [%] [%] [%] [%] [%] [%]		4.225 4.225 6.568 5.701 12.309 5.848 6.568 5.000 8.049	3,997 3,997 6,538 5,635 11,055 5,793 6,538 6,538 5,224 7,249	3.339 3.339 5.810 4.874 9.510 5.044 5.810 5.343 7.192	2.128 2.128 5.292 4.317 7.421 4.900 5.292 5.350 6.495	1.655 1.655 4.324 3.311 6.23 3.927 4.324 5.365 5.914
Non-metal ores Others Manufacturing Basic mat Machin.&eq. Non-dur. goods Miscellan. Service Commer.& tour. Public admins.	[%] [%] [%] [%] [%] [%] [%] [%]		4.225 4.225 6.568 5.701 12.309 5.848 6.568 6.568 6.000 8.049 5.321	3,997 3,997 3,997 6,538 5,635 5,793 6,538 6,538 6,538 6,224 7,249 5,541	3.339 3.339 5.810 4.874 9.510 5.044 5.810 6.343 7.192 5.655	2.128 2.128 6.232 4.317 7.421 4.900 5.292 6.350 6.495 5.858	1.655 1.655 4.324 3.311 6.23 3.927 4.324 5.365 5.914 5.666
Non-metal ores Others Manufacturing Basic mat Machin.&eq. Non-dur. goods Miscellan. Service Commer.& tour. Public admins. Finance&buss.	[%] [%] [%] [%] [%] [%] [%] [%]		4.225 4.225 6.568 5.701 12.309 5.848 6.568 5.000 8.049 5.321 6.694	3,997 3,997 3,997 6,538 5,635 11,055 5,793 6,538 6,538 6,538 6,538 6,538 6,538 6,538 6,538 6,538 6,538 6,538 6,534 7,249 5,541 6,796	3.339 3.339 5.810 4.874 9.510 5.044 5.810 5.343 7.192 5.655 6.806	2.128 2.128 5.232 4.317 7.421 4.900 5.292 5.350 6.495 5.658 6.984	1.655 1.655 4.324 3.311 6.235 3.927 4.324 5.365 5.914 5.665 7.600
Non-metal ores Others Manuf act uring Basic mat Machin.&eq. Non-dur. goods Miscellan. Service Commer.& tour. Public admins. Finance&buss. Person serv.& others	[%] [%] [%] [%] [%] [%] [%] [%] [%] [%]		4.225 4.225 6.568 5.701 12.309 5.848 6.568 5.000 8.049 5.321 6.694 3.6694	3,997 3,997 3,997 6,538 5,636 5,793 6,538 6,538 6,538 6,538 6,524 7,249 5,541 6,796 4,042	3.339 3.339 5.810 4.874 9.510 5.044 5.810 5.343 7.192 5.655 6.806 4.089	2.128 2.128 5.292 4.317 7.421 4.900 5.292 5.360 6.495 5.668 6.984 4.224	1.655 1.655 4.324 3.311 6.235 3.927 4.324 5.366 5.914 5.666 7.606 7.600
Non-metal ores Others Manuf act uring Basic mat Machin.&eq. Non-dur. goods Miscellan. Service Commer.& tour. Public admins. Finance&buss. Persn. serv. & others Energy	[%] [%] [%] [%] [%] [%] [%] [%] [%] [%]		4.225 4.225 6.568 5.701 12.309 5.848 6.568 5.000 8.049 5.321 6.694 3.668 5.722	3,997 3,997 3,997 6,538 5,638 5,638 6,538 6,538 6,538 6,538 6,538 6,541 6,796 4,042 4,900	3.339 3.339 5.810 4.874 9.510 5.044 5.810 5.343 7.192 5.855 6.806 4.088 2.544	2.128 2.128 5.292 4.317 7.421 4.900 5.292 5.350 6.495 5.858 6.984 4.234 2.060	1.655 1.655 4.324 3.311 6.235 3.927 4.324 5.365 5.914 5.665 7.665 4.305
Non-metal ores Others Manuf acturing Basic mat Machin.&eq. Non-dur. goods Miscellan. Service Commer.& tour. Public admins. Finance&buss. Persn. serv. & others Energy Total GDP	[%] [%] [%] [%] [%] [%] [%] [%] [%] [%]		4.225 4.225 6.568 5.701 12.309 5.848 6.568 5.000 8.049 5.321 6.694 3.668 5.727 5.000	3.997 3.997 3.997 6.538 5.635 5.793 6.538 6.538 6.538 6.538 6.538 6.541 6.796 4.042 4.800	3.339 3.339 5.810 4.874 9.510 5.044 5.810 5.843 7.192 5.855 6.806 4.088 3.514	2.128 2.128 5.292 4.317 7.421 4.900 5.292 5.350 6.495 5.658 6.984 4.234 2.060 4.400	1.652 1.652 4.324 3.311 6.233 4.325 5.365 5.914 5.665 7.603 4.300 1.100 4.200
Non-metal ores Others Manuf acturing Basic mat Machin.&eq. Non-dur. goods Miscellan. Service Commer.& tour. Public admins. Finance&buss. Persn. serv. & others Energy Total GDP GDP bac	[%] [%]		4.225 4.225 6.568 5.701 12.309 5.848 6.568 5.000 8.049 5.321 6.694 3.668 5.727 5.000	3,997 3,997 6,538 5,635 11,055 5,793 6,538 5,224 7,249 5,541 6,796 4,042 4,800 4,800	3.339 3.339 5.810 4.874 9.510 5.044 5.810 5.343 7.192 5.655 6.806 4.088 3.514 4.600 2.440	2.128 2.128 5.292 4.317 7.421 4.900 5.292 5.350 6.495 5.658 6.984 4.234 2.060 4.400	1.655 1.655 4.324 3.311 6.239 3.927 4.324 5.365 7.605 4.302 1.104 4.200 2.455

Figure 3.11. Snapshot of Tables 2-7 to 2-9 (calculated data) of worksheet "GDP-D".

Energy intensities for Industry													
Table 3-1 Energy int	tensities of	Motor	fuels										
ltem	Unit	2000	2005	2010	2015	2020	2025						
Agriculture	[kWh/US\$]	0.972	0.872	0.798	0.725	0.668	0.611						
Farming	[K/Vh/US\$]	1.500	1.400	1.350	1.300	1.250	1.200						
Livestock	[K/Vh/US\$]	0.000	0.000	0.000	0.000	0.000	0.000						
Forestry	[K/Vh/US\$]	0.800	0.700	0.600	0.500	0.450	0.400						
Fishing	[K/Vh/US\$]	0.500	0.450	0.400	0.350	0.300	0.250						
Construction	[kWh/US\$]	0.580	0.574	0.568	0.562	0.556	0.550						
Buildings	[K/Vh/US\$]	0.100	0.100	0.100	0.100	0.100	0.100						
Infrastructure	[K/Vh/US\$]	0.700	0.700	0.700	0.700	0.700	0.700						
Mining	[kWh/US\$]	0.210	0.210	0.210	0.210	0.210	0.210						
Metal ores	[K/Vh/US\$]	0.300	0.300	0.300	0.300	0.300	0.300						
Non-metal ores	[K/Vh/US\$]	0.200	0.200	0.200	0.200	0.200	0.200						
Others	[k/Vh/US\$]	0.100	0.100	0.100	0.100	0.100	0.100						
Manufacturing	[kWh/US\$]	0.122	0.121	0.120	0.119	0.119	0.118						
Basic mat.	[KWh/US\$]	0.150	0.150	0.150	0.150	0.150	0.150						
Machin.&eq.	[K/Vh/US\$]	0.100	0.100	0.100	0.100	0.100	0.100						
Non-dur, goods	[K/Vh/US\$]	0.120	0.120	0.120	0.120	0.120	0.120						
Miscellan.	[KWh/US\$]	0.050	0.050	0.050	0.050	0.050	0.050						

Figure 3.12. Snapshot of Table 3-1 of worksheet "EnInt-D".

(b) Worksheet "UsEne-D" (Table 4)

This worksheet contains only model-calculated data on the useful energy demand of motor fuels (Table 4-1), specific uses of electricity (Table 4-2) and thermal uses (Table 4-3) in the Agriculture, Construction, Mining and Manufacturing sectors. Table 4-4 summarizes the useful energy demand for the entire aggregated sector of Industry. Figure 3.13 shows a snapshot of Table 4-1.

It should be mentioned that the energy demand for motor fuels and specific uses of electricity are, in fact, calculated directly in terms of final energy because no substitution is allowed for these particular energy uses and sectors. The only energy use for which the energy demand is calculated in terms of useful energy is that of thermal uses. To convert the useful energy demand for thermal uses in Agriculture, Construction, Mining and Manufacturing sectors to final energy, additional information is necessary on the penetrations of various energy carriers into this market and on the efficiencies of their use. The respective input data will be provided in the next worksheets.

Useful energy de	mand	i in Indu	ustry								
Table 4-1 Useful energy demand for Motor fuels											
Table 4-1 Useful energy demand for Motor fuels											
ltem	Unit	2000	2005	2010	2015	2020	2025				
Agriculture	GWa	0.912	1.001	1.060	1.089	1.115	1.115				
Farming	GWa	0.774	0.852	0.906	0.937	0.960	0.965				
Livestock	GWa	0.000	0.000	0.000	0.000	0.000	0.000				
Forestry	GWa	0.116	0.121	0.120	0.113	0.113	0.110				
Fishing	GWa	0.021	0.028	0.035	0.039	0.043	0.041				
Construction	GWa	0.051	0.065	0.081	0.100	0.123	0.143				
Buildings	GWa	0.002	0.002	0.003	0.004	0.005	0.006				
Infrastructure	GWa	0.049	0.062	0.078	0.096	0.117	0.136				
Mining	GWa	0.044	0.054	0.066	0.078	0.087	0.094				
Metal ores	GWa	0.022	0.027	0.033	0.039	0.043	0.047				
Non-metal ores	GWa	0.017	0.021	0.025	0.030	0.033	0.036				
Others	GWa	0.005	0.006	0.008	0.009	0.010	0.011				
Manufacturing	GWa	0.061	0.083	0.113	0.149	0.191	0.235				
Basic mat.	GWa	0.019	0.025	0.032	0.041	0.051	0.060				
Machin.&eq.	GWa	0.005	0.009	0.015	0.024	0.034	0.046				
Non-dur, goods	GWa	0.036	0.048	0.063	0.081	0.103	0.124				
Miscellan.	GWa	0.001	0.002	0.002	0.003	0.004	0.005				
Total	GWa	1.068	1.203	1.320	1.415	1.516	1.587				

Figure 3.13. Snapshot of Table 4-1 of worksheet "UsEne-D".

(c) Worksheet "ACMFac-D" (Table 5)

Tables 5-1 to 5-3 are meant for entering the input data on penetration of different energy carriers (traditional fuels, modern biomass, electricity, soft solar and fossil fuels) into the useful thermal energy markets of Agriculture, Construction and Mining sectors (see Figure 3.14). Table 5-4 provides the model-calculated values of the weighted average penetration of the above five energy carriers into the combined useful thermal energy market of ACM. (For the details of these and all other calculations performed by MAED_D, the user should refer to Section 5 of this manual). The weighted average penetration have only an informative role because when converting useful to final thermal energy demand the sector specific penetrations from Tables 5-1 to 5-3 are used.

The next three tables are used to indicate the average efficiency of traditional fuels (Table 5-5), modern biomass (Table 5-6) and fossil fuels (Table 5-7) when used for thermal uses in Agriculture, Construction and Mining sectors (see Figure 3.15). It should be mentioned that all the efficiencies in MAED_D model are expressed in relative terms versus the efficiency of electricity for the same end-use.

Penetration of energy carriers into us eful thermal energy for Agriculture, Construction and Mining												
Table 5-1 Penetration of energy carriers into useful thermal energy for Agriculture												
Agriculture	Uhit	2000	2005	2010	2015	2020	2025					
Traditional fuels	[196]	12.00	11 DO	10.00	9.00	8.00	7.00					
Modern biomass	[%]	2.00	4.50	7.00	9.50	12.00	15.00					
Electricity	[%]	1.00	2 00	3.50	5.00	6.50	00.8					
Solar	[%]	0.00	1.00	2.00	3.00	4.00	5.00					
Fos sil fuels	[%]	85.00	81.50	77.50	73.50	69.50	65.00					
Table 5-2 Penetration of energy carriers into useful thermal energy for Construction												
Construction	Unit	2000	2005	2010	2015	2020	2025					
Traditional fuels	[166]	5.00	4.50	400	3.50	3.00	2.00					
Modern biomass	[%]	1.00	1.50	2.00	3.00	4.00	5.00					
Electricity	[%]	0.00	0.00	000	0.00	0.00	0.00					
Solar	[%]	0.00	0.00	0.00	0.00	0.00	0.00					
Fos sil fuels	[%]	94.00	94.00	94.00	93.50	93.00	93.00					
Table 5-3 Penetr	ation	of energy	carriers in	to useful t	hermal ene	rgy for Mi	ning					
Mining	Unit	2000	2005	2010	2015	2020	2025					
Traditional fuels	[%]	5.00	4.50	400	3.50	3.00	2.00					
Modern biomass	[%]	1.00	1.50	2.00	3.00	4.00	500					
Electricity	[%]	0.00	0.00	0.00	0.00	0.00	0.00					
Solar	[%]	0.00	0.00	000	0.00	0.00	000					
Fos sil fuels	[%]	94.00	94.00	9400	93.50	93.00	93.00					

Figure 3.14. Snapshot of Tables 5-1 to 5-3 (penetrations) of worksheet "ACMFac-D".

Table 5-5 Averag	able 5-5 Average efficiency of traditional fuels in thermal uses in Agriculture, Construction and Mining										
item	Unit	2000	2005	2010	2015	2020	2025				
Agriculture	[56]	25.00	27.00	29.00	31.00	33.00	35.00				
Construction	[1%]	30.00	32.00	34.00	38.00	38.00	40.00				
Mining	[56]	30.00	32.00	34.00	36.00	38.00	40.00				
Table 5-6 Average efficiency of modern biomass in thermal uses in Agriculture, Construction and Minin											
item	Unit	2000	2005	2010	2015	2020	2025				
Agriculture	[%]	30.00	32.00	34.00	38.00	38.00	40.00				
Construction	[%]	33.00	33.50	34.00	36.00	38.00	40.00				
Mining	[%]	33.00	33.50	34.00	36.00	38.00	40.00				
Table 5-7 Average efficiency of fossil fuels in thermal uses in Agriculture, Construction and Mining											
item	Unit	2000	2005	2010	2015	2020	2025				
Agriculture	四间	40.00	42.00	44.00	46.00	48.00	50.00				
Construction	四间	40.00	42.00	44.00	46.00	48.00	50.00				

Figure 3.15. Snapshot of Tables 5-5 to 5-7 (efficiencies) of worksheet "ACMFac-D".

(d) Worksheet "FIN_ACM-D" (Table 6)

This worksheet contains only model-calculated data on the final energy demand for different energy carriers (traditional fuels, modern biomass, electricity, soft solar, fossil fuels and motor fuels) in Agriculture (Tables 6-1 to 6-3), Construction (Tables 6-4 to 6-6), Mining (Tables 6-7 to 6-9) and aggregated ACM (Tables 6-10 to 6-12). For each sector the final energy demand for each energy carrier is expressed in absolute terms (default unit: GWa), as share of total final energy demand of the sector (%) and as energy intensity (kWh/MU). Figure 3.16 shows the content of Tables 6-1 to 6-3 relating to the final energy demand in Agriculture sector.

Final energy demand in Agriculture, Construction and Mining

ltem	Unit	2000	2005	2010	2015	2020	2025
Traditional fuels	GWa	0.037	0.038	0.037	0.034	0.030	0.026
Modern biomass	GWa	0.005	0.013	0.022	0.029	0.039	0.049
Electricity	GWa	0.167	0.300	0.504	0.734	0.982	1.248
Solar	GWa	0.000	0.001	0.002	0.003	0.005	0.007
Fossil fuels	GWa	0.165	0.182	0.186	0.186	0.180	0.171
Motor fuels	GWa	0.912	1.001	1.060	1.089	1.115	1.115
Total AGR	GWa	1.287	1.536	1.811	2.075	2.352	2.618
Table 6-2 Total fi	nal energy	demand in	Agricultu	re (shares)			
Item	Unit	2000	2005	2010	2015	2020	2025
Traditional fuels	[%]	2.904	2.487	2.016	1.628	1.283	1.008
Modern biomass	[%]	0.403	0.858	1.204	1.402	1.672	1.890
Electricity	[%]	13.013	19.543	27.831	35.378	41.743	47.687
Solar	[%]	0.000	0.061	0.117	0.168	0.212	0.252
Fossil fuels	[%]	12.858	11.846	10.299	8.959	7.665	6.551
Motor fuels	[%]	70.822	65.203	58.534	52.465	47.426	42.612
Table 6-3 Total fi	nal energy	demand p	er value ad	ded in Ag	iculture		
ltem	Unit	2000	2005	2010	2015	2020	2025
Traditional fuels	[kWh/US\$]	0.040	0.033	0.027	0.023	0.018	0.014
Modern biormass	[kWh/US\$]	0.006	0.011	0.016	0.019	0.024	0.027
Electricity	[kWh/US\$]	0.179	0.261	0.379	0.489	0.588	0.683
Solar	[kWh/US\$]	0.000	0.001	0.002	0.002	0.003	0.004
Fossil fuels	[kWh/US\$]	0.176	0.158	0.140	0.124	0.108	0.094
Motor fuels	[kWh/US\$]	0.972	0.872	0.798	0.725	0.668	0.611
Total AGR	[kWh/US\$]	1.372	1.337	1.363	1.382	1.409	1.433

Table 6-1 Total final energy demand in Agriculture (absolute)

(e) Worksheet "ManFac1-D" (Table 7)

This worksheet contains both input data fields and model-calculated data. The input data required to be entered refer to the shares of different thermal processes (steam generation, furnace/direct heat, space & water heating) in useful thermal energy demand of each sub sector of Manufacturing sector (Figure 3.17).

The model calculates the useful energy demand for steam generation, furnace/direct heat and space & water heating for the Manufacturing subsectors and for the entire sector, which is shown in the next sub-tables of the worksheet (Figure 3.18). The number of these sub-tables depends on the number of subsectors of Manufacturing sector.

(f) Worksheet "ManFac2-D" (Table 8)

In Table 8-1 of this worksheet the user enters the penetrations of different energy carriers (electricity, heat pumps, district heat, cogeneration, soft solar, traditional fuels, and modern biomass) into their respective applicable heat markets (steam generation, furnace/direct heat, space & water heating) associated with the useful thermal energy demand of the

Figure 3.16. Snapshot of Tables 6-1 to 6-3 (Agriculture) of worksheet "FIN-ACM".

Manufacturing sector. Given their nature, some energy carriers (heat pumps, district heat, cogeneration, soft solar) are not applicable for the furnace/direct heat market. The model puts the same penetration data in a systematic format (Table 8-5) and the aggregated penetrations of each energy form into the useful thermal energy demand of the entire Manufacturing sector are calculated (Table 8-3).

Table 8-2 contains input data related to the efficiencies of different energy carriers when used for thermal uses in Manufacturing sector and other factors: coefficient of performance (COP) of heat pumps, solar share, heat to electricity ratio of cogeneration systems and biomass share in cogeneration systems (see Section 4, Table 4.1 for the definition of these variables). The last three rows of this table show the calculated values of the average efficiencies of the three types of fuels (fossil fuels, traditional fuels and modern biomass) used for providing useful thermal energy to Manufacturing industries (see Figure 3.19).

Table 8-4 includes coefficients of equations used for projecting the quantities of steel production and feedstock requirements for the petrochemical industry, shown in the last two rows of the table, and some parameters used to derive the coke demand for non-electric steel production (see Figure 3.20).

Factors for Manufacturing											
Shares of useful thermal energy demand in Manufacturing											
Table 7-1											
Basic mat.	Unit	2000	2005	2010	2015	2020	2025				
Steam generation	[%]	15.000	15.000	15.000	15.000	15.000	15.000				
Furnace/direct heat	[%]	80.000	80.000	80.000	80.000	80.000	80.000				
Space& water heating	[%]	5.000	5.000	5.000	5.000	5.000	5.000				
Table 7-2											
Machin.&eq.	Unit	2000	2005	2010	2015	2020	2025				
Steam generation	[%]	15.000	15.000	15.000	15.000	15.000	15.000				
Furnace/direct heat	[%]	70.000	70.000	70.000	70.000	70.000	70.000				
Space& water heating	[%]	15.000	15,000	15.000	15.000	15.000	15.000				
Table 7-3											
Non-dur.goods	Unit	2000	2005	2010	2015	2020	2025				
Steam generation	[%]	70.000	70.000	70.000	70.000	70.000	70.000				
Furnace/direct heat	[%]	15.000	15.000	15.000	15.000	15.000	15.000				
Space& water heating	[%]	15.000	15,000	15.000	15.000	15.000	15.000				
Table 7-4											
Miscellan.	Unit	2000	2005	2010	2015	2020	2025				
Steam generation	[%]	20.000	20.000	20.000	20.000	20.000	20.000				
Furnace/direct heat	[%]	60.000	60.000	60.000	60.000	60.000	60.000				
Space& water heating	[%]	20.000	20,000	20.000	20.000	20.000	20.000				

Figure 3.17. Snapshot of input data tables of worksheet "ManFac1-D".

o setar thermal ener	gy ach	and in mar	andecurring	9								
Table 7-5												
Basic mat.	Unit	2000	2005	2010	2015	2020	2025					
Steam generation	GWa	0.075	0.094	0.117	0.140	0.163	0.179					
Furnace/direct heat	GWa	0.398	0.499	0.622	0.745	0.867	0.956					
Space&water heating	GWa	0.025	0.031	0.039	0.047	0.054	0.060					
Total	GWa	0.498	0.624	0.778	0.932	1.083	1.195					
Table 7-6												
Machin.&eq.	Unit	2000	2005	2010	2015	2020	2025					
Steam generation	GWa	0.002	0.003	0.005	0.007	0.010	0.012					
Furnace/direct heat	GWa	0.008	0.014	0.022	0.033	0.045	0.058					
Space&water heating	GWa	0.002	0.003	0.005	0.007	0.010	0.012					
Total	GWa	0.012	0.020	0.032	0.047	0.064	0.082					
Table 7-7												
Non-dur. goods	Unit	2000	2005	2010	2015	2020	2025					
Steam generation	GWa	0.418	0.472	0.515	0.565	0.598	0.653					
Furnace/direct heat	GWa	0.090	0.101	0.110	0.121	0.128	0.140					
Space&water heating	GWa	0.090	0.101	0.110	0.121	0.128	0.140					
Total	GWa	0.597	0.675	0.736	0.807	0.854	0.932					
Table 7-8												
Miscellan.	Unit	2000	2005	2010	2015	2020	2025					
Steam generation	GWa	0.001	0.001	0.001	0.002	0.002	0.002					
Furnace/direct heat	GWa	0.002	0.003	0.004	0.005	0.006	0.007					
Space&water heating	GWa	0.001	0.001	0.001	0.002	0.002	0.002					
Total	GWa	0.004	0.005	0.007	0.008	0.010	0.011					
Table 7-9												
Total MAN	Unit	2000	2005	2010	2015	2020	2025					
Steam generation	GWa	0.495	0.570	0.638	0.714	0.772	0.846					
Furnace/direct heat	GWa	0.499	0.617	0.759	0.905	1.046	1.160					
Space&water heating	GWa	0.117	0.136	0.155	0.176	0.194	0.214					
Total MAN	GWa	1.111	1.324	1.552	1.794	2.012	2.221					

Useful thermal energy demand in Manufacturing

Figure 3.18. Snapshot of calculated data of worksheet.

Energy carriers	Unit	2000	2005	2010	2015	2020	2025
Bectricity, steam gen.	[%]	2.000	2.000	2.000	2.000	2.000	2.000
Bectricity, furn./dir. heat	[%]	7.000	8.000	9.000	10.000	12.000	14.000
Bectricity, sp./wheating	[%]	2.000	3.000	4.000	6.000	8.000	10.000
Of which:							
Heat pumps, steam gen.	[%]	0.000	0.000	0.000	0.000	0.000	0.000
Heat pumps, sp./wheating	[%]	20.000	30.000	40.000	50.000	65.000	80.000
District heat, steam gen.	[%]	10.000	11.000	12.000	13.000	14.500	16.000
District heat , sp ./w heating	[%]	12.000	13.000	14.000	15.000	16.000	17.000
Cogeneration, steam gen.	[%]	14.000	15.000	16.000	17.000	18.000	19.000
Cogeneration, sp./wheating	[%]	9.000	10.000	11.000	12.000	13.000	14.000
Solar, steamigen.	[%]	0.000	0.000	0.000	0.000	0.000	0.000
Solar, sp./wheating	[%]	1.000	2.000	3.000	4.000	5.000	6.000
Trad. F., steam gen .	[%]	5.000	4.500	4.000	3.500	3.000	2.000
Trad. F., furn./dir. heat	[%]	3.000	2.600	2.200	1.800	1.400	1.000
Trad. F., sp./wheating	[%]	5.000	4.500	4.000	3.500	3.000	2.000
Mod Rio, steppinger	四句	2.000	3.000	4.000	6.000	8.000	10.000
wou, bio, steam gen.							
Mod. Bio., furn./dir. heat	[%]	2.000	3.000	4.000	6.000	8.000	10.000
Mod. Bio., furn./dir. heat Mod. Bio., sp./w heating	[%] [%]	2.000 2.000	3.000 3.000	4.000 4.000	6.000 6.000	8.000 8.000	10.000 10.000
Mod. Bio., furn./dir. heat Mod. Bio., sp./w heating Table 8-2 Efficiencies, ratio	[%] [%] Dis etc.	2.000 2.000 2000	3.000 3.000 2005	4.000 4.000 2010	6.000 6.000 2015	8.000 8.000 2020	10.000 10.000 2025
Mod. Bio., steam gen. Mod. Bio., furn./dir. heat Mod. Bio., sp./w heating Table 8-2 Efficiencies, ratio Factors	[%] [%] os etc. Unit	2.000 2.000 2000 2.500	3.000 3.000 2005 3.000	4.000 4.000 2010 3.500	6.000 6.000 2015 4.000	8.000 8.000 2020 4.500	10.000 10.000 2025 5.000
Mod. Bio., furn./dir. heat Mod. Bio., sp./w heating Table 8-2 Efficiencies, ratio Factors COP of heat pumps Solar share	[%] [%] os etc. Unit [ratio] [%]	2.000 2.000 2.500 40.000	3.000 3.000 2005 3.000 40.000	4.000 4.000 2010 3.500 40.000	6.000 6.000 2015 4.000 40.000	8.000 8.000 2020 4.500 40.000	10.000 10.000 2025 5.000 40.000
Mod. Bio., steam gen. Mod. Bio., furn./dir. heat Mod. Bio., sp./w heating Table 8-2 Efficiencies, ratio Factors COP of heat pumps Solar share Bf. of cogeneration	[%] [%] os etc. Unit [ratio] [%]	2.000 2.000 2.500 40.000 70.000	3.000 3.000 2005 3.000 40.000 72.000	4.000 4.000 2010 3.500 40.000 74.000	6.000 6.000 2015 4.000 40.000 76.000	8.000 8.000 2020 4.500 40.000 78.000	10.000 10.000 2025 5.000 40.000 80.000
Mod. Bio., steam gen. Mod. Bio., furn./dir. heat Mod. Bio., sp./w heating Table 8-2 Efficiencies, ratio Factors COP of heat pumps Solar share Bf. of cogeneration Heat/electricity ratio	[%] [%] os etc. (ratio] [%] [%]	2.000 2.000 2.500 40.000 70.000 3.000	3.000 3.000 2005 3.000 40.000 72.000 3.000	4.000 4.000 2010 3.500 40.000 74.000 3.000	6.000 6.000 2015 4.000 40.000 76.000 3.000	8.000 8.000 2020 4.500 40.000 78.000 3.000	10.000 10.000 2025 5.000 40.000 80.000 3.000
Mod. Bio., steam gen. Mod. Bio., furn./dir. heat Mod. Bio., sp./w heating Table 8-2 Efficiencies, ratio Factors COP of heat pumps Solar share Bf. of cogeneration Heat/electricity ratio Biomass share in Co Gen	[%] [%] os etc. (ratio] [%] [%] [ratio] [%]	2.000 2.000 2.500 40.000 70.000 3.000 4.000	3.000 3.000 2005 3.000 40.000 72.000 3.000 6.000	4.000 4.000 3.500 40.000 74.000 3.000 8.000	6.000 6.000 2015 4.000 40.000 76.000 3.000 10.000	8.000 8.000 2020 4.500 40.000 78.000 3.000 12.500	10.000 10.000 2025 5.000 40.000 80.000 3.000 15.000
Mod. Bio., steam gen. Mod. Bio., furn./dir. heat Mod. Bio., sp./w heating Table 8-2 Efficiencies, ratio Factors COP of heat pumps Solar share Bf. of cogeneration Heat/electricity ratio Biomass share in Co Gen Bf. of Fossil F., steam gen.	[%] [%] os etc. (ratio] [%] [%] [%]	2.000 2.000 2.500 40.000 70.000 3.000 4.000 70.000	3.000 3.000 2005 3.000 40.000 72.000 3.000 6.000 71.000	4.000 4.000 3.500 40.000 74.000 3.000 8.000 72.000	6.000 6.000 2015 4.000 40.000 76.000 3.000 10.000 73.000	8.000 8.000 4.500 40.000 78.000 3.000 12.500 74.000	10.000 10.000 2025 5.000 40.000 80.000 3.000 15.000 75.000
Mod. Bio., steam gen. Mod. Bio., furn./dir. heat Mod. Bio., sp./w heating Table 8-2 Efficiencies, ratio Factors COP of heat pumps Solar share Eff. of cogeneration Heat/electricity ratio Biomass share in Co Gen Eff. of Fossil F., steam gen. Eff. of Fossil F., furn./dir. heat	[%] [%] os etc. (ratio] [%] [%] [%] [%]	2.000 2.000 2.500 40.000 70.000 3.000 4.000 70.000 60.000	3.000 3.000 2005 3.000 40.000 72.000 3.000 6.000 71.000 61.000	4.000 4.000 3.500 40.000 74.000 3.000 8.000 72.000 62.000	6.000 6.000 2015 4.000 40.000 76.000 3.000 10.000 73.000 63.000	8.000 8.000 4.500 40.000 78.000 3.000 12.500 74.000 64.000	10.000 10.000 2025 5.000 40.000 80.000 3.000 15.000 75.000 85.000
Mod. Bio., steam gen. Mod. Bio., furn./dir. heat Mod. Bio., sp./w heating Table 8-2 Efficiencies, ratio Factors COP of heat pumps Solar share Eff. of cogeneration Heat/electricity ratio Biomass share in CoGen Eff. of Fossil F., steam gen. Eff. of Fossil F., furn./dir. heat Eff. of Fossil F., sp./wheating	[%] [%] os etc. (ratio] [%] [%] [%] [%] [%]	2.000 2.000 2.500 40.000 70.000 3.000 4.000 70.000 60.000 60.000	3.000 3.000 2005 3.000 40.000 72.000 3.000 6.000 71.000 61.000 61.000	4.000 4.000 3.500 40.000 74.000 3.000 8.000 72.000 62.000	6.000 6.000 2015 4.000 40.000 76.000 3.000 10.000 73.000 63.000 63.000	8.000 8.000 4.500 40.000 78.000 3.000 12.500 74.000 64.000 64.000	10.000 10.000 2025 5.000 40.000 80.000 3.000 15.000 75.000 85.000 85.000
Mod. Bio., steam gen. Mod. Bio., furn./dir. heat Mod. Bio., sp./w heating Table 8-2 Efficiencies, ratio Factors COP of heat pumps Solar share Bif. of cogeneration Heat/electricity ratio Biomass share in CoGen Bif. of Fossil F., steam gen. Bif. of Fossil F., furn./dir. heat Bif. of Fossil F., steam gen.	[%] [%] os etc. (ratio] [%] [%] [%] [%] [%]	2.000 2.000 2.500 40.000 70.000 3.000 4.000 60.000 60.000 30.000	3.000 3.000 2005 3.000 40.000 72.000 3.000 6.000 71.000 61.000 61.000 32.000	4.000 4.000 3.500 40.000 74.000 3.000 8.000 72.000 62.000 62.000 34.000	6.000 6.000 2015 4.000 40.000 76.000 3.000 10.000 73.000 63.000 63.000 36.000	8.000 8.000 4.500 40.000 78.000 3.000 12.500 74.000 64.000 64.000 38.000	10.000 10.000 2025 5.000 40.000 80.000 3.000 15.000 75.000 65.000 65.000 40.000
Mod. Bio., steam gen. Mod. Bio., furn./dir. heat Mod. Bio., sp./w heating Table 8-2 Efficiencies, ratio Factors COP of heat pumps Solar share Bf. of cogeneration Heat/electricity ratio Biomass share in CoGen Bf. of Fossil F., steam gen. Bf. of Fossil F., furn./dir. heat Bf. of Trad. F., steam gen. Bf. of Trad. F., furn./dir. heat	[%] [%] [%] 0s etc. 0. [ratio] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]	2,000 2,000 2,500 40,000 70,000 3,000 4,000 60,000 60,000 30,000 30,000	3.000 3.000 2005 3.000 40.000 72.000 3.000 6.000 71.000 61.000 61.000 32.000 32.000	4.000 4.000 3.500 40.000 74.000 3.000 8.000 62.000 62.000 62.000 34.000	6.000 6.000 2015 4.000 40.000 76.000 3.000 63.000 63.000 63.000 36.000	8.000 8.000 4.500 40.000 78.000 3.000 12.500 74.000 64.000 64.000 38.000 38.000	10.000 10.000 2025 5.000 40.000 3.000 15.000 75.000 65.000 65.000 40.000
Mod. Bio., furn./dir. heat Mod. Bio., sp./w heating Table 8-2 Efficiencies, ratio Factors COP of heat pumps Solar share Eff. of cogeneration Heat/electricity ratio Biomass share in Co Gen Eff. of Fossil F., steam gen. Eff. of Fossil F., steam gen. Eff. of Fossil F., steam gen. Eff. of Trad. F., steam gen. Eff. of Trad. F., steam gen.	[%] [%] os etc. (ratio] [%] [%] [%] [%] [%] [%] [%] [%]	2.000 2.000 2.500 40.000 70.000 3.000 60.000 60.000 60.000 30.000 30.000 25.000	3.000 3.000 3.000 40.000 72.000 3.000 6.000 61.000 61.000 61.000 32.000 32.000 27.000	4.000 4.000 3.500 40.000 74.000 3.000 8.000 62.000 62.000 62.000 34.000 34.000 29.000	6.000 6.000 2015 4.000 40.000 76.000 3.000 63.000 63.000 63.000 36.000 36.000 31.000	8.000 8.000 4.500 40.000 78.000 3.000 12.500 74.000 64.000 64.000 38.000 38.000 33.000	10.000 10.000 2025 5.000 40.000 3.000 15.000 55.000 65.000 65.000 40.000 35.000
Mod. Bio., steam gen. Mod. Bio., furn./dir. heat Mod. Bio., sp./w heating Table 8-2 Efficiencies, ratio Factors COP of heat pumps Solar share Bf. of cogeneration Heat/electricity ratio Biomass share in Co Gen Bf. of Fossil F., steam gen. Bf. of Fossil F., steam gen. Bf. of Fossil F., steam gen. Bf. of Trad. F., steam gen. Bf. of Trad. F., sp./wheating Bf. of Mod. Bio., steam gen.	[%] [%] os etc. (ratio] [%] [%] [%] [%] [%] [%] [%] [%]	2.000 2.000 2.500 40.000 70.000 3.000 4.000 60.000 60.000 30.000 30.000 25.000	3.000 3.000 3.000 40.000 72.000 3.000 6.000 61.000 61.000 61.000 32.000 32.000 32.000 42.000	4.000 4.000 3.500 40.000 74.000 3.000 8.000 62.000 62.000 62.000 34.000 34.000 29.000	6.000 6.000 4.000 40.000 76.000 3.000 63.000 63.000 63.000 36.000 36.000 31.000	8.000 8.000 4.500 40.000 78.000 3.000 12.500 64.000 64.000 64.000 38.000 38.000 38.000 38.000	10.000 10.000 2025 5.000 40.000 3.000 15.000 65.000 65.000 40.000 40.000 35.000
Mod. Bio., steam gen. Mod. Bio., furn./dir. heat Mod. Bio., sp./w heating Table 8-2 Efficiencies, ratio Factors COP of heat pumps Solar share Eff. of cogeneration Heat/electricity ratio Biomass share in Co Gen Eff. of Fossil F., steam gen. Eff. of Fossil F., steam gen. Eff. of Fossil F., steam gen. Eff. of Trad. F., steam gen. Eff. of Trad. F., sp./wheating Eff. of Trad. F., sp./wheating Eff. of Trad. F., sp./wheating Eff. of Trad. F., sp./wheating Eff. of Mod. Bio., steam gen. Eff. of Mod. Bio., steam gen.	[%] [%] [%] 0s etc. Unit [ratio] [%]	2.000 2.000 2.500 40.000 70.000 3.000 60.000 60.000 60.000 30.000 30.000 25.000 40.000	3.000 3.000 3.000 40.000 72.000 3.000 61.000 61.000 61.000 32.000 32.000 32.000 42.000	4.000 4.000 3.500 40.000 74.000 3.000 8.000 62.000 62.000 62.000 62.000 34.000 34.000 34.000 44.000	6.000 6.000 4.000 40.000 76.000 3.000 63.000 63.000 63.000 36.000 36.000 36.000 46.000	8.000 8.000 4.500 40.000 78.000 3.000 12.500 64.000 64.000 64.000 38.000 38.000 33.000 48.000	10.000 10.000 2025 5.000 40.000 3.000 15.000 65.000 65.000 40.000 35.000 50.000
Mod. Bio., furn./dir. heat Mod. Bio., sp./w heating Table 8-2 Efficiencies, ratio Factors COP of heat pumps Solar share Eff. of cogeneration Heat/electricity ratio Biomass share in Co Gen Eff. of Fossil F., steam gen. Eff. of Fossil F., furn./dir. heat Eff. of Trad. F., steam gen. Eff. of Trad. F., sp./wheating Eff. of Trad. F., sp./wheating Eff. of Trad. F., sp./wheating Eff. of Mod. Bio., steam gen. Eff. of Mod. Bio., sp./wheating	[%] [%] [%] 0s etc. 0. [ratio] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]	2.000 2.000 2.500 40.000 70.000 3.000 60.000 60.000 60.000 30.000 30.000 25.000 40.000 40.000	3.000 3.000 3.000 40.000 72.000 3.000 61.000 61.000 61.000 32.000 32.000 32.000 42.000 42.000 37.000	4.000 4.000 3.500 40.000 74.000 3.000 8.000 62.000 62.000 62.000 34.000 34.000 34.000 34.000 34.000 39.000	6.000 6.000 4.000 40.000 76.000 3.000 63.000 63.000 63.000 36.000 36.000 36.000 46.000 46.000	8.000 8.000 4.500 40.000 78.000 3.000 12.500 64.000 64.000 64.000 38.000 38.000 38.000 48.000 48.000	10.000 10.000 2025 5.000 40.000 3.000 15.000 65.000 65.000 40.000 35.000 50.000 50.000
Mod. Bio., furn./dir. heat Mod. Bio., sp./w heating Table 8-2 Efficiencies, ratio Factors COP of heat pumps Solar share Eff. of cogeneration Heat/electricity ratio Biomass share in Co Gen Eff. of Fossil F., steam gen. Eff. of Fossil F., sp./wheating Eff. of Trad. F., steam gen. Eff. of Trad. F., sp./wheating Eff. of Trad. F., sp./wheating Eff. of Mod. Bio., steam gen. Eff. of Mod. Bio., sp./wheating Eff. of Mod. Bio., sp./wheating Eff. of Mod. Bio., sp./wheating Eff. of Fossil F., average	[%] [%] [%] [%] os etc. Unit [ratio] [%]	2.000 2.000 2.500 40.000 70.000 3.000 4.000 60.000 60.000 60.000 30.000 30.000 25.000 40.000 40.000 35.000	3.000 3.000 3.000 40.000 72.000 3.000 6.000 61.000 61.000 61.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000 64.364	4.000 4.000 3.500 40.000 74.000 3.000 8.000 62.000 62.000 62.000 62.000 34.000 34.000 34.000 34.000 34.000 34.000 34.000 34.000 65.154	6.000 6.000 2015 4.000 40.000 76.000 3.000 63.000 63.000 63.000 36.000 36.000 36.000 36.000 46.000 46.000	8.000 8.000 4.500 40.000 78.000 3.000 12.500 64.000 64.000 64.000 38.000 38.000 38.000 48.000 48.000 48.000 66.837	10.000 10.000 2025 5.000 40.000 3.000 15.000 65.000 65.000 40.000 35.000 50.000 50.000 67.792
Mod. Bio., furn./dir. heat Mod. Bio., sp./w heating Table 8-2 Efficiencies, ratio Factors COP of heat pumps Solar share Eff. of cogeneration Heat/electricity ratio Biomass share in Co Gen Eff. of Fossil F., steam gen. Eff. of Fossil F., furn./dir. heat Eff. of Trad. F., steam gen. Eff. of Trad. F., sp./wheating Eff. of Trad. F., sp./wheating Eff. of Mod. Bio., steam gen. Eff. of Mod. Bio., steam gen. Eff. of Mod. Bio., sp./wheating Eff. of Mod. Bio., sp./wheating Eff. of Fossil F., average Eff. of Trad. F., average	[%] [%] [%] [%] os etc. Unit [ratio] [%]	2.000 2.000 2.500 40.000 70.000 3.000 4.000 60.000 60.000 60.000 30.000 30.000 25.000 40.000 40.000 35.000 63.535 29.249	3.000 3.000 3.000 40.000 72.000 3.000 61.000 61.000 61.000 61.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000	4.000 4.000 3.500 40.000 74.000 3.000 8.000 62.000 62.000 62.000 62.000 34.000 34.000 34.000 34.000 34.000 34.000 34.000 65.154 33.264	6.000 6.000 4.000 40.000 76.000 3.000 63.000 63.000 63.000 36.000 36.000 36.000 36.000 46.000 46.000 46.000 46.000	8.000 8.000 4.500 40.000 78.000 3.000 12.500 64.000 64.000 64.000 38.000 38.000 38.000 48.000 48.000 48.000 66.837 37.247	10.000 10.000 2025 5.000 40.000 3.000 15.000 65.000 65.000 40.000 35.000 50.000 50.000 40.000 50.000 50.000 67.792 39.268

Table 8-1 Penetration of energy carriers into useful thermal energy demand in Manufacturing

Figure 3.19. Snapshot of Tables 8-1 and 8-2 of worksheet "ManFac2-D".

Table 8.4. Eactors for nig iron production and foodstock:											
Table 0-4 Factors for pry non production and reedstock:											
Factors	Unit	2000	2005	2010	2015	2020	2025				
Steel production (const)	[Mt]	- 1.460	- 1.460	-1.460	-1.460	-1.460	-1.460				
Steel production (var)	[Mt/VAMan(1)]	1.910	1,910	1.910	1.910	1.910	1.910				
Steel in non-electrum.	[%]	100.000	90.000	80.000	70.000	60.000	50.000				
Spec. cons. of pig iron	[%]	80.000	80,000	80.000	80.000	80.000	80.000				
Coke usage	[kg/ton]	750.000	540.000	530.000	520.000	510.000	500.000				
Feedstock prod. (const.)	[Mt]	0.010	0.010	0.010	0.010	0.010	0.010				
Feedstock prod. (var)	[Mt/VAMan(1)]	0.600	0.600	0.600	0.600	0.600	0.600				
Steel production	[Mt]	0.623	1.288	2,155	3.125	4.205	5.206				
Feedstock production	[Mt]	0.664	0.873	1.145	1.450	1.789	2,104				

Figure 3.20 Snapshot of Tables 8-4 of worksheet "ManFac2-D"

(g) Worksheet "FIN Ind-D" (Table 9)

This worksheet includes only model-calculated data on the final energy demand for different energy carriers (traditional fuels, modern biomass, electricity, district heat, soft solar, fossil fuels, motor fuels, coke and feedstock) in Manufacturing (Tables 9-1 to 9-3) as shown in Figure 3.21 and in the entire aggregated sector of Industry (Tables 9-4 to 9-6) as illustrated in Figure 3.22. For each sector the final energy demand for each energy carrier is expressed in absolute terms (default unit: GWa), as share of total final energy demand of the sector (%) and as energy intensity (kWh/MU).

Final energy demand in Manufacturing									
Table 9-1 Total fina	al energy d	emand in	2005	cturing (absolute	e) 2020	20.25		
Traditional fuels	GVA(a	0.156	0.153	0.146	0135	0 117	0.084		
Modern biomass	GWa	0.150	1 1 97	1 861	2.736	3.848	5 21 9		
Electricity	GWa	0.380	0.519	0 711	0.944	1 234	1 492		
District heat	GWa	0.064	0.080	0.098	0.119	0.143	0.172		
Solar	GWa	0.000	0.001	0.002	0.003	0.004	0.005		
Fossil fuels	GWa	1.488	1.711	1.940	2.133	2.250	2.332		
Motor fuels	GWa	0.061	0.083	0.113	0.149	0.191	0.235		
Coke	GWa	0.347	0.465	0.679	0.846	0.957	0.968		
Feedstock	GWa	0.882	1.159	1.521	1.926	2.376	2.794		
Total MAN	GWa	4.043	5.370	7.070	8.990	11.119	13.300		
Table 9-2 Total fina Item	al energy d	emand in	n Manufa 2005	cturing (shares) 2015	2020	2025		
Traditional fuole	1061	3 8 5 5	2 850	2 050	1.406	1 053	0.628		
Modern biomass	1701	16 4 54	22.050	26 323	30.437	34 604	39 243		
Flectricity	[%]	9.407	9.667	10.057	10.498	11.098	11.220		
District heat	[%]	1.573	1.498	1.391	1.326	1.286	1.292		
Solar	[%]	0.012	0.020	0.026	0.031	0.035	0.039		
Fossil fuels	[%]	36.796	31.871	27.433	23.731	20.236	17.532		
Motor fuels	[%]	1.502	1.543	1.597	1.653	1.720	1.766		
Coke	[%]	8.587	8.666	9.606	9.408	8.603	7.276		
Feedstock	[%]	21.812	21.589	21.508	21.419	21.366	21.004		
Table 9-3 Total fina	al energy d	emand p	er value	added in	Manufa	cturing			
item	Unit	2000	2005	2010	2015	2020	2025		
Traditional fuels	KWWUS\$	0.313	0.224	0.155	0.108	0.073	0.042		
Modern biomass	[K/Vh/US\$]	1.336	1.749	1.981	2.197	2.387	2.620		
Electricity District least	[K/VN/US\$]	0.764	0.759	0.757	0.758	0.765	0.749		
District neat		0.128	0.118	0.105	0.096	0.089	0.086		
Solal Esseil fusic		0.001	0.002	0.002	0.002	0.002	0.003		
rossi i uels Motor fuels	IKWNUOS\$	2.988	2.501	2.065	0.110	0.440	1.170		
Coke		0.122	0.121	0.120	0.119	0.119	0.118		
Eggelstack		0.09/	1 604	1.610	1.579	1 474	0.480		
Total MAN	[kWh/US\$]	8.120	7.847	7.528	7.217	6.897	6.676		

Figure 3.21. Snapshot of Tables 9-1 to 9-3 of worksheet "FIN Ind-D".

Final energy demand in Industry

	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
ltem	Unit	2000	2005	2010	2015	2020	2025				
Traditional fuels	GWa	0.197	0.195	0.187	0.173	0.151	0.113				
Modern biomass	GWa	0.671	1.212	1.885	2.769	3,893	5.276				
Electricity	GWa	0.571	0.847	1.249	1.719	2.261	2.791				
District heat	GWa	0.064	0.080	0.098	0.119	0.143	0.172				
Solar	GWa	0.000	0.002	0.004	0.006	0.009	0.012				
Fossil fuels	GWa	1.710	1.961	2.206	2.411	2.532	2.613				
Motor fuels	GWa	1.068	1.203	1.320	1.415	1.516	1.587				
Coke	GWa	0.347	0.465	0.679	0.846	0.957	0.968				
Feedstock	GWa	0.882	1.159	1.521	1.926	2.376	2.794				
Total IND	GWa	5.510	7.126	9.149	11.384	13.837	16.324				

Table 9-4 Total final energy demand in Industry (absolute)

Table 9-5 Total final energy demand in Industry (shares)

ltem	Unit	2000	2005	2010	2015	2020	2025
Traditional fuels	[%]	3.581	2.743	2.039	1.516	1.094	0.692
Modern biomass	[%]	12,181	17.004	20.605	24.326	28.131	32,321
Electricity	[%]	10.356	11.892	13.656	15.097	16.343	17.095
District heat	[%]	1.154	1.128	1.075	1.047	1.033	1.053
Solar	[%]	0.009	0.028	0.044	0.055	0.064	0.072
Fossil fuels	[%]	31.038	27.521	24.112	21.180	18.297	16.005
Motor fuels	[%]	19.377	16.884	14.424	12.432	10.956	9.722
Coke	[%]	6.301	6.531	7.424	7.430	6.913	5.928
Feedstock	[%]	16.004	16.269	16.622	16.916	17.169	17.113

Table 9-6 Total final energy demand per value added in Industry

item	Unit	2000	2005	2010	2015	2020	2025
Traditional fuels	[KWWUS\$]	0.114	0.089	0.068	0.052	0.039	0.025
Modern biomass	[KWWUS\$]	0.387	0.550	0.692	0.840	0.994	1.166
Electricity	[KWWUS\$]	0.329	0.384	0.458	0.521	0.578	0.616
District heat	[KWWUS\$]	0.037	0.036	0.036	0.036	0.037	0.038
Solar	[KWWUS\$]	0.000	0.001	0.001	0.002	0.002	0.003
Fossil fuels	[KWWUS\$]	0.986	0.890	0.810	0.731	0.647	0.577
Motor fuels	[KWWUS\$]	0.615	0.546	0.484	0.429	0.387	0.351
Coke	[KWWUS\$]	0.200	0.211	0.249	0.257	0.244	0.214
Feedstock	[KWWUS\$]	0.508	0.526	0.558	0.584	0.607	0.617
Total IND	[kWh/US\$]	3.176	3.233	3.357	3.454	3.534	3.606

Figure 3.22. Snapshot of Tables 9-4 to 9-6- of worksheet "FIN Ind-D".

3.3.7 Worksheets for transportation sector (Tables 10 to 13)

The energy demand analysis of the Transportation sector is covered by four worksheets: "FrTrp-D", meant for entering the input data related to freight transportation and also for showing the results of the model-based calculations for this transportation subsector; "PassIntra-D", serving the same purpose but for the intracity (urban) passenger transportation subsector; massInter-D" for intercity passenger transportation subsector; and "FIN_Trp-D", which summarizes the overall energy demand analysis results for the entire Transportation sector.

(a) Worksheet "FrTrp-D" (Table 10)

As illustrated in Figure 3.23, the input data requirements of this worksheet include coefficients of various terms of the formula adopted for calculating total freight transport activity (Table 10-1); modal split of freight transportation (Table 10-3); and energy intensities (in natural units) of the respective modes of freight transportation (Table 10-4).

Freight transportation										
Table 10-1 Generati	ion of freight-ki	ilometers								
ltem	Unit	2000	2005	2010	2015	2020	2025			
Farming	[tkm/US\$]	0.816	0.816	0.816	0.816	0.816	0.816			
Livestock	[tkm/US\$]	0.000	0.000	0.000	0.000	0.000	0.000			
Forestry	[tkm/US\$]	0.816	0.816	0.816	0.816	0.816	0.816			
Fishing	[tkm/US\$]	0.816	0.816	0.816	0.816	0.816	0.816			
Buildings	[tkm/US\$]	0.000	0.000	0.000	0.000	0.000	0.000			
Infrastructure	[tkm/US\$]	0.000	0.000	0.000	0.000	0.000	0.000			
Metal ores	[tkm/US\$]	0.800	0.800	0.800	0.800	0.800	0.800			
Non-metal ores	[tkm/US\$]	0.800	0.800	0.800	0.800	0.800	0.800			
Others	[tkm/US\$]	0.800	0.800	0.800	0.800	0.800	0.800			
Basic mat.	[tkm/US\$]	1.500	1.500	1.500	1.500	1.500	1.500			
Machin.&eq.	[tkm/US\$]	0.500	0.500	0.500	0.500	0.500	0.500			
Non-dur, goods	[tkm/US\$]	0.800	0.800	0.800	0.800	0.800	0.800			
Miscellan.	[tkm/US\$]	1.000	1.000	1.000	1.000	1.000	1.000			
Commer.& tour.	[tkm/US\$]	0.500	0.500	0.500	0.500	0.500	0.500			
Public admins.	[tkm/US\$]	0.500	0.500	0.500	0.500	0.500	0.500			
Finance&buss.	[tkm/US\$]	0.000	0.000	0.000	0.000	0.000	0.000			
Persn. serv. & others	[tkm/US\$j	0.000	0.000	0.000	0.000	0.000	0.000			
Energy	[tkm/US\$]	0.400	0.400	0.400	0.400	0.400	0.400			
Base value	[10^9tkm]	43,800	43,800	43,800	43.800	43.800	43.800			
Table 10-2 Total fre	ight-kilometers	;								
ltem	Unit	2000	2005	2010	2015	2020	2025			
Freight-km	[10^9tkm]	58.977	63.326	68.484	74,512	81.482	89,095			
Table 10-3 Modal s	plit of freight tr	ansportati	on							
ltem	Unit	2000	2005	2010	2015	2020	2025			
Local trucks	[%]	20.000	21.000	22.000	23.000	24.000	25.000			
Long dist.trucks	[%]	25.000	24.000	23.000	22.000	21.000	20.000			
Train diesel	[%]	30.000	28.000	26.000	24.000	22.000	20.000			
Train electric	[%]	10.000	12.000	14.000	16.000	18.000	20.000			
Train steam	[%]	5.000	4.000	3.000	2.000	1.000	0.000			
Barge	[%]	3.000	3200	3.400	3,600	3.800	4.000			
Pipeline (diesel)	[%]	4.000	4,400	4.800	5200	5.600	6.000			
Pipeline (electric)	四句	3.000	3,400	3.800	4 200	4.600	5.000			
Table 10.4 Energy i	ntoneity of froi	aht tranen	ortation (natural un	ite)					
table 10-4 Ellergy I	lication of the second s	gne eransp 2000	2005	2040	2045	2020	2025			
Lood trucks	U/400Lives1	44.500	44,500	44,400	44,200	44 2020	44.400			
Loca trucks	[V1000 km]	0.000	0.050	0.000	0.400	0.000	0.000			
Long dist trucks	[V100t km]	9.200	9250	9.200	9,100	9.000	0088			
Train diesel	[I/100t km]	2.310	2,300	2.290	2280	2.2/0	2260			
Train eleαric	[KWN/100t Km]	6.500	6,500	6.400	6,300	6.200	6.100			
i rain steam	[kgce/100tkm]	13,150	13.150	13,150	13.150	13.150	13,150			
Barge	[l/100t km]	2.300	2,300	2.290	2.280	2.270	2.250			
Pipeline (diesel)	[l/100t km]	0.800	0.800	0.800	0.800	0.800	0.800			
Pipeline (electric)	[kWh/100t km]	6.050	6.050	6.050	6.050	6.050	6.050			

Figure 3.23. Snapshot of input data tables of worksheet "FrTrp-D".

The freight transportation modes are those specified by the user in worksheet "Defs". The model-based calculated data stored in this worksheet comprise total freight transportation activity, expressed in 10⁹ ton-kilometers (Table 10-2); energy intensities of freight transportation modes expressed in a common energy unit - kWh/100t-km (Table 10-5); and energy consumption of freight transportation sub sector by mode of transportation (Table 10-6) as well as by fuel type (Table 10-7) and by fuel group type: electricity, steam coal and motor fuels (Table 10-8). The size of Table 10 depends on the number of subsectors selected by the user for Agriculture, Construction, Mining, Manufacturing and Service sectors, on the number of freight transportation modes and on the number of fuels used by these transportation modes. Figure 3.24 shows a snapshot of calculated data tables of this worksheet.

Table 10-5 Energy i	intensity of frei	ght transp	ortation (energy ur	iits)		
ltem	Unit	2000	2005	2010	2015	2020	2025
Local trucks	[KWh/100t km]	115,154	115.154	114,153	113,152	112,150	111.149
Long dist.trucks	[KWh/100t km]	92.624	92.624	92.124	91.122	90.121	89,120
Train diesel	[KWh/100t km]	23,131	23.031	22.931	22,831	22.730	22,630
Train electric	[KWh/100t km]	6.500	6.500	6.400	6.300	6.200	6,100
Train steam	[KWh/100t km]	107.054	107.054	107.054	107.054	107.054	107.054
Barge	[KWh/100t km]	23.031	23.031	22.931	22,831	22.730	22,530
Pipeline (diesel)	[KWh/100t km]	8.011	8.011	8.011	8.011	8.011	8.011
Pipeline (electric)	[KWh/100t km]	6.050	6.050	6.050	6.050	6.050	6.050
Table 10-6 Energy (consumption of	f freight tr	ansportat 2005	ion (by m	ode)	2020	2025
Local trucks	GWb	1.551	17/8	1.062	2013	25020	2020
Lopa dist trucks	GWb	1.551	1,807	1.800	1705	1 780	1.813
Train diesel	GWa	0.487	0.466	0.466	0.486	0.485	0.460
Train electric	GWa	0.407	0.058	0.400	0.980	0.403	0.400
Train steam	GWa	0.360	0.310	0.070	0.182	0.104	0.124
Barge	GWa	0.047	0.053	0.061	0.070	0.080	0.092
Pipeline (diesel)	GWa	0.022	0.025	0.030	0.035	0.042	0.049
Pipeline (electric)	GWa	0.012	0.015	0.018	0.022	0.026	0.031
Total	GWa	4.061	4.281	4.516	4.780	5.080	5.395
Table 10-7 Energy (consumption o	f freight tr	ansportat	ion (by fu	el)		
ltem	Unit	2000	2005	2010	2015	2020	2025
Electricity	GWa	0.056	0.071	0.088	0.107	0.130	0.155
Steam coal	GWa	0.360	0.310	0.251	0.182	0.100	0.000
Diesel	GWa	3.646	3,900	4.177	4.490	4.851	5240
Total	GWa	4.061	4 281	4.516	4.780	5.080	6,395
Table 10-8 Energy (consumption o	f freight tr	ansportat	ion (by fu	el group)		
ltem	Unit	2000	2005	2010	2015	2020	2025
Electricity	GWa	0.056	0.071	0.088	0.107	0.130	0.155
Steam coal	GWa	0.360	0.310	0.251	0.182	0.100	0.000
Motor fuels	GWa	3.645	3,900	4.177	4.490	4.851	5240
Total	GWa	4.061	4.281	4.516	4,780	5.080	5.395

Figure 3.24. Snapshot of calculated data tables of worksheet "FrTrp-D".

(b) Worksheet "PassIntra-D" (Table 11)

The input data required to be entered into this worksheet covers the intracity (urban) passenger travel. The first input data is the intracity distance traveled per urban person per day (Table 11-1), which, together with the population living in large cities from "Demogr-D" worksheet, is used for deriving the urban travel activity, expressed in 10⁹ passenger-kilometers (Table 11-4). The other input data include load factors (Table 11-2) of the urban passenger transportation modes selected by the user in worksheet "Defs", modal split of the

urban travel activity (Table 11-3) and the energy intensities (in natural units) of various transportation modes of urban travel (Table 11-5). The corresponding data calculated by the model for intracity travel and stored in this worksheet, include the travel activity levels (10⁹ passenger-km) by different modes of transportation (Table 11-4); energy intensities of these modes expressed in kWh/p-km (Table 11-6); and energy consumption of intracity passenger transportation subsector by mode (Table 11-7), by fuel type (Table 11-8) and by fuel group type: electricity and motor fuels (Table 11-9). The size of Table 11 depends on the number of intracity passenger transportation modes selected by the user in worksheet "Defs" and on the number of fuels used by these transportation modes. Figure 3.25 shows a snapshot of input data tables of this worksheet while the calculated data are presented in Figure 3.26.

Intracity passenger transportation											
Table 11-1 Distance t	ravelled										
ltem	Unit	2000	2005	2010	2015	2020	2025				
Dist.intracity	km/prsn/day	3.300	3.500	4.000	4.500	5.000	6.000				
Table 11-2 Load facto	prs										
Item	Unit	2000	2005	2010	2015	2020	2025				
Car gasoline	[prsn/Car gasoline]	2.000	2.000	2.000	2.000	2.000	2.000				
Cardiesel	[prsn/Car diesel]	2.000	2.000	2.000	2.000	2.000	2.000				
Caralcohol	[prsn/Caralcohol]	2.000	2.000	2.000	2.000	2.000	2.000				
CarLPG	[prsn/Car LPG]	2.000	2.000	2.000	2.000	2.000	2.000				
Carelectric	[prsn/Carelectric]	2.000	2.000	2.000	2.000	2.000	2.000				
Bus diesel	[prsn/Bus diesel]	60.000	60.000	55.000	50.000	45.000	40.000				
Bus CNG	[prsn/Bus CNG]	60.000	58.000	55.000	50.000	45.000	40.000				
Metro el.	[prsn/Metro el .]	500.000	480.000	460.000	440.000	420.000	400.000				
Tramwayel.	[prsn/Tramway el.]	100.000	96.000	92.000	88.000	84.000	80.000				
Trolleybus el.	[prsn/Trolleybus el.]	60.000	58.000	55,000	50.000	45.000	40.000				
Table 11-3 Modal split	t of intracity passenge	er transpo	rtation								
item	Unit	2000	2005	2010	2015	2020	2025				
Cargasoline	<u>[%</u>]	6.000	6.500	7.000	8.000	9.000	10.000				
Cardiesel	[%g	1.000	1.500	2.000	3.000	4.000	5.000				
Caralcohol	[%]	0.000	0.000	1.000	2.000	3.000	5.000				
Car LPG	P/6	1.000	2.000	3.000	4.000	5.000	6.000				
Carelectric	19/6	0.000	0.000	0.000	1.000	2.000	4.000				
Bus diesel	15/6	75.000	75.000	70.000	60.000	50.000	40.000				
Bus CNG	19/6	1.000	2.000	3.000	4.000	5.000	5.000				
Metro el.	[%a]	0.000	0.000	0.000	3.000	6.000	10.000				
Tramwayel.	[%6]	0.000	0.000	3.000	5.000	7.000	10.000				
Trolleybus el.	[%]	16.000	13.000	11.000	10.000	9.000	5.000				
Table 11-5 Energy int	ensity of intracity pass	enger tra	nsportatio	n (natura	l units)						
ltem	Unit	2000	2005	2010	2015	2020	2025				
Cargasoline	[1/100 km]	11.000	10.900	10.800	10.700	10.600	10.500				
Cardiesel	[/100km]	10.000	9.900	9,800	9.700	9.600	9,500				
Caralcohol	[/100km]	16.000	15.900	15,800	15.700	15.600	15,500				
Car LPG	[1/100 km]	14.000	13.900	13,800	13.700	13.600	13,500				
Carelectric	[kWh/100km]	30.000	29.800	29.600	29.400	29.200	29.000				
Bus diesel	[/100km]	35.000	34,800	34,600	34,400	34.200	34,000				
Bus CNG	[1/100 km]	45.000	44.700	44.400	44.100	43.800	43.500				
Metro el.	[kWh/100km]	800.000	790.000	780.000	770.000	760.000	750.000				
Tramway el.	[kWb/100km]	500.000	495.000	490.000	485.000	480.000	475.000				
Trolleybus el.	[kWh/100km]	300.000	295.000	290.000	285.000	280.000	275.000				

Figure 3.25. Snapshot of input data tables of worksheet "PassIntra-D".

Table 11-4 Intracity passenger transportation by mode											
ltem	Unit	2000	2005	2010	2015	2020	2025				
Total	[10^9 pkm]	5.075	6.366	8,506	11.060	14.041	19,036				
Cargasoline	[10/9 pkm]	0.304	0.414	0.595	0.885	1.264	1.904				
Cardiesel	[10^9 pkm]	0.051	0.095	0.170	0.332	0.562	0.952				
Caralcohol	[10^9 pkm]	0.000	0.000	0.085	0.221	0.421	0.952				
Car LPG	[10^9 pkm]	0.051	0.127	0.255	0.442	0.702	1.142				
Carelectric	[10^9 pkm]	0.000	0.000	0.000	0.111	0.281	0.761				
Bus diesel	[10^9 pkm]	3,806	4.775	5,954	6.636	7.021	7.614				
Bus CNG	[10^9.pkm]	0.051	0.127	0.255	0.442	0.702	0.952				
Metro el.	[10^9.pkm]	0.000	0.000	0.000	0.332	0.842	1,904				
Tramwayel.	[10^9 pkm]	0.000	0.000	0.255	0.553	0.983	1,904				
Trolleybus el.	[10^9pkm]	0.812	0.828	0.936	1.106	1.264	0.952				
Table 11.6 Energy intensity of intracity passenger transportation (energy units)											
ttem	Unit	2000	2005	2010	2015	2020	2025				
Car dasoline	[kWb/pkm]	0.515	0.511	0.506	0.501	0.497	0.492				
Cardiesel	[k\\blackm]	0.501	0.496	0.491	0.486	0.481	0.478				
Caralcobol	[k)@b/pkm]	0.491	0.488	0.495	0.482	0.479	0.478				
Carl PG	[k)@b@km]	0.499	0.485	0.481	0.478	0.474	0.471				
Carelottio	[k\\backsin]	0.460	0.400	0.449	0.410	0.414	0.445				
Rus diesel	[k)@b/pkm]	0.058	0.058	0.063	0.069	0.140	0.095				
Bue CNG	[khidb ip km]	0.040	0.044	0.043	0.046	0.054	0.057				
Matro d	[kimpin]	0.040	0.041	0.045	0.040	0.001	0.031				
Meroe. Termovel	[KWR/pKn]	0.016	0.010	0.017	0.016	0.018	0.013				
Trallecture of	[KWR/pKn]	0.050	0.002	0.053	0.050	0.007	0.000				
rioneybus e.	[[күйн/ркт]	0.060	0.001	0.005	0.057	0.062	0.065				
Table 11-7 Energy co	nsumption of intracity	passenge	r transpol	tation (by	/ mode)						
Item	Unit	2000	2005	2010	2015	2020	2025				
ltem Cargasoline	Unit GWa	2000 0.018	2005	2010 0.034	2015	2020	2025 0,107				
ltem Cargasoline Cardiesel	Unit GWa GWa	2000 0.018 0.003	2005 0.024 0.005	2010 0.034 0.010	2015 0.051 0.018	2020 0.072 0.031	2025 0.107 0.052				
ttem Car gasoline Car diesel Car alcohol	Unit GWa GWa GWa	2000 0.018 0.003 0.000	2005 0.024 0.005 0.000	2010 0.034 0.010 0.005	2015 0.051 0.018 0.012	2020 0.072 0.031 0.023	2025 0.107 0.052 0.052				
ttem Car gasoline Car diesel Car alcohol Car LPG	Unit GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.003	2005 0.024 0.005 0.000 0.007	2010 0.034 0.010 0.005 0.014	2015 0.051 0.018 0.012 0.024	2020 0.072 0.031 0.023 0.038	2025 0.107 0.052 0.052 0.061				
ttem Car gasoline Car diesel Car alcohol Car LPG Car electric	Unit GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.003 0.000	2005 0.024 0.005 0.000 0.007 0.000	2010 0.034 0.010 0.005 0.014 0.000	2015 0.051 0.018 0.012 0.024 0.002	2020 0.072 0.031 0.023 0.038 0.005	2025 0.107 0.052 0.052 0.061 0.013				
ttem Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel	Unit GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.003 0.000 0.025	2005 0.024 0.005 0.000 0.007 0.000 0.000	2010 0.034 0.010 0.005 0.014 0.000 0.043	2015 0.051 0.018 0.012 0.024 0.002 0.052	2020 0.072 0.031 0.023 0.038 0.005 0.061	2025 0.107 0.052 0.052 0.061 0.013 0.074				
ttem Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG	Unit GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.003 0.000 0.025 0.000	2005 0.024 0.005 0.000 0.007 0.000 0.032 0.001	2010 0.034 0.010 0.005 0.014 0.000 0.043 0.001	2015 0.051 0.018 0.012 0.024 0.002 0.052 0.002	2020 0.072 0.031 0.023 0.038 0.005 0.061 0.064	2025 0.107 0.052 0.052 0.061 0.013 0.074 0.006				
ttem Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el.	Unit GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.003 0.000 0.025 0.000 0.000	2005 0.024 0.005 0.000 0.007 0.000 0.032 0.001 0.000	2010 0.034 0.010 0.005 0.014 0.000 0.043 0.001 0.000	2015 0.051 0.018 0.024 0.024 0.002 0.052 0.052 0.002	2020 0.072 0.031 0.023 0.038 0.005 0.061 0.004 0.002	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.004				
ttem Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el. Tramway el.	Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.003 0.000 0.025 0.000 0.000 0.000	2005 0.024 0.005 0.000 0.007 0.000 0.032 0.001 0.000 0.000	2010 0.034 0.010 0.005 0.014 0.000 0.043 0.001 0.000 0.002	2015 0.051 0.018 0.024 0.024 0.052 0.052 0.002 0.001 0.001	2020 0.072 0.031 0.023 0.038 0.005 0.061 0.004 0.002 0.006	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.004 0.013				
Item Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el. Tramway el. Trolleybus el.	Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.003 0.000 0.025 0.000 0.000 0.000 0.000	2005 0.024 0.005 0.000 0.007 0.000 0.032 0.001 0.000 0.000 0.000	2010 0.034 0.010 0.005 0.014 0.000 0.043 0.001 0.000 0.002 0.005	2015 0.051 0.018 0.024 0.024 0.052 0.052 0.002 0.001 0.003 0.003	2020 0.072 0.031 0.023 0.038 0.005 0.061 0.004 0.002 0.006 0.009	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.004 0.013 0.007				
Item Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el. Tramway el. Trolleybus el. Total	Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.003 0.000 0.025 0.000 0.000 0.000 0.005 0.054	2005 0.024 0.005 0.000 0.007 0.000 0.032 0.001 0.000 0.000 0.005 0.074	2010 0.034 0.010 0.005 0.014 0.000 0.043 0.001 0.000 0.002 0.006 0.114	2015 0.051 0.018 0.024 0.024 0.002 0.052 0.002 0.001 0.003 0.007 0.173	2020 0.072 0.031 0.023 0.038 0.005 0.061 0.004 0.002 0.006 0.009 0.250	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.004 0.013 0.007 0.389				
Item Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el. Tramway el. Trolleybus el. Total	Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.003 0.000 0.000 0.000 0.000 0.005 0.054	2005 0.024 0.005 0.000 0.007 0.000 0.032 0.001 0.000 0.000 0.005 0.074	2010 0.034 0.010 0.005 0.014 0.000 0.043 0.001 0.000 0.002 0.006 0.114	2015 0.051 0.018 0.012 0.024 0.002 0.052 0.002 0.001 0.003 0.007 0.173	2020 0.072 0.031 0.023 0.038 0.005 0.061 0.004 0.002 0.006 0.009 0.250	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.004 0.013 0.007 0.388				
Item Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el. Tramway el. Trolleybus el. Total Table 11-8 Energy col	Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.003 0.000 0.025 0.000 0.000 0.000 0.005 0.054 passenge	2005 0.024 0.005 0.000 0.007 0.000 0.032 0.001 0.000 0.005 0.074 r transpor	2010 0.034 0.010 0.005 0.014 0.000 0.043 0.001 0.000 0.002 0.006 0.114 tation (by	2015 0.051 0.018 0.024 0.002 0.002 0.002 0.001 0.003 0.007 0.173 / fuel)	2020 0.072 0.031 0.023 0.038 0.005 0.061 0.004 0.002 0.006 0.009 0.250	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.004 0.013 0.007 0.388				
Item Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el. Tramway el. Trolleybus el. Total Table 11-8 Energy col Item	Unit GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.025 0.000 0.000 0.000 0.005 0.054 pas senge 2000	2005 0.024 0.005 0.000 0.007 0.000 0.002 0.001 0.000 0.000 0.005 0.074 r transpor 2005	2010 0.034 0.010 0.005 0.014 0.000 0.043 0.001 0.002 0.006 0.114 tation (by 2010	2015 0.051 0.018 0.024 0.024 0.022 0.062 0.002 0.001 0.003 0.007 0.173 / fuel) 2015	2020 0.072 0.031 0.023 0.038 0.005 0.061 0.004 0.002 0.006 0.009 0.250 2020	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.004 0.013 0.007 0.388 2025				
Item Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el. Tramway el. Trolleybus el. Trolleybus el. Total Table 11-8 Energy col Item Electricity	Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.025 0.000 0.000 0.005 0.054 passenge 2000 0.005	2005 0.024 0.005 0.000 0.007 0.000 0.003 0.000 0.005 0.074 r transpot 2005 0.005	2010 0.034 0.010 0.005 0.014 0.000 0.043 0.001 0.002 0.006 0.114 tation (by 2010 0.007	2015 0.051 0.018 0.024 0.002 0.052 0.002 0.001 0.003 0.007 0.173 / fuel) 2015 0.013	2020 0.072 0.031 0.023 0.038 0.005 0.061 0.004 0.002 0.009 0.250 2020 0.022	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.004 0.013 0.007 0.388 2025 0.037				
Item Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el. Tramway el. Trolleybus el. Total Table 11-8 Energy col Item Electricity Diesel	Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.025 0.000 0.000 0.005 0.054 passenge 2000 0.005 0.005	2005 0.024 0.005 0.000 0.007 0.000 0.003 0.000 0.005 0.074 r transpor 2005 0.005 0.005 0.005	2010 0.034 0.010 0.005 0.014 0.000 0.043 0.001 0.002 0.006 0.114 tation (by 2010 0.007 0.052	2015 0.051 0.018 0.024 0.002 0.002 0.002 0.001 0.003 0.007 0.173 2015 0.013 0.071	2020 0.072 0.031 0.023 0.038 0.005 0.061 0.004 0.002 0.009 0.250 2020 0.022 0.092	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.004 0.013 0.007 0.388 2025 0.037 0.126				
Item Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el. Tramway el. Trolleybus el. Total Table 11-8 Energy col Item Electricity Diesel Gasoline	Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.025 0.000 0.000 0.005 0.005 0.054 passenge 2000 0.005 0.028 0.028	2005 0.024 0.005 0.000 0.007 0.000 0.003 0.001 0.000 0.005 0.074 r transpor 2005 0.005 0.005 0.005 0.005	2010 0.034 0.010 0.005 0.014 0.000 0.043 0.001 0.002 0.006 0.114 tation (by 2010 0.007 0.052 0.034	2015 0.051 0.018 0.024 0.002 0.052 0.002 0.001 0.003 0.007 0.173 2015 0.013 0.071 0.051	2020 0.072 0.031 0.023 0.038 0.005 0.061 0.004 0.002 0.009 0.250 2020 0.022 0.022 0.092 0.072	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.004 0.013 0.007 0.389 2025 0.037 0.126 0.107				
Item Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el. Tramway el. Trolleybus el. Total Table 11-8 Energy col Item Electricity Diesel Gasoline LPG	Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.025 0.000 0.000 0.005 0.005 0.054 passenge 2000 0.005 0.028 0.028	2005 0.024 0.005 0.000 0.007 0.000 0.003 0.001 0.000 0.000 0.005 0.074 r transpor 2005 0.005 0.005 0.037 0.024 0.007	2010 0.034 0.010 0.005 0.014 0.000 0.043 0.001 0.002 0.006 0.114 tation (by 2010 0.007 0.052 0.034 0.014	2015 0.051 0.012 0.024 0.002 0.052 0.002 0.001 0.003 0.007 0.173 / fuel) 2015 0.013 0.071 0.051 0.024	2020 0.072 0.031 0.023 0.065 0.061 0.004 0.002 0.006 0.009 0.250 0.250 2020 0.022 0.022 0.092 0.072 0.038	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.004 0.013 0.007 0.389 2025 0.037 0.126 0.107 0.126				
Item Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el. Tramway el. Trolleybus el. Total Table 11-8 Energy col Item Electricity Diesel Gasoline LPG CNG	Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.025 0.000 0.000 0.005 0.005 0.054 passenge 2000 0.005 0.028 0.028 0.028	2005 0.024 0.005 0.000 0.007 0.000 0.003 0.001 0.000 0.005 0.074 rtranspor 2005 0.005 0.005 0.037 0.024 0.007 0.024	2010 0.034 0.010 0.005 0.014 0.000 0.043 0.001 0.002 0.006 0.114 tation (by 2010 0.007 0.052 0.034 0.014 0.001	2015 0.051 0.012 0.024 0.002 0.052 0.002 0.001 0.003 0.007 0.173 / fuel) 2015 0.013 0.071 0.051 0.024 0.002	2020 0.072 0.031 0.023 0.005 0.061 0.004 0.002 0.006 0.009 0.250 0.250 0.250 0.022 0.022 0.022 0.092 0.072 0.038 0.004	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.004 0.013 0.007 0.388 2025 0.037 0.126 0.037 0.126 0.107 0.061				
Item Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el. Trolleybus el. Trotal Table 11-8 Energy col Item Electricity Diesel Gasoline LPG CNG Alcohol	Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.025 0.000 0.000 0.005 0.005 0.054 passenge 2000 0.005 0.028 0.028 0.028 0.028 0.028 0.028	2005 0.024 0.005 0.000 0.007 0.000 0.003 0.001 0.000 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	2010 0.034 0.010 0.005 0.014 0.000 0.043 0.001 0.000 0.002 0.006 0.114 tation (by 2010 0.007 0.052 0.034 0.014 0.001 0.005	2015 0.051 0.012 0.024 0.052 0.052 0.002 0.001 0.003 0.007 0.173 / fuel) 2015 0.013 0.071 0.051 0.024 0.024 0.002	2020 0.072 0.031 0.023 0.005 0.061 0.004 0.002 0.002 0.009 0.250 2020 0.022 0.022 0.022 0.022 0.022 0.022 0.038 0.004 0.023	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.007 0.388 2025 0.037 0.388 2025 0.037 0.128 0.037 0.128 0.037				
Item Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el. Tramway el. Trolleybus el. Total Table 11-8 Energy col Item Electricity Diesel Gasoline LPG CNG Alcohol Total	Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.025 0.000 0.000 0.005 0.054 0.054 2000 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028	2005 0.024 0.005 0.000 0.007 0.000 0.003 0.000 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	2010 0.034 0.010 0.005 0.014 0.000 0.043 0.001 0.000 0.002 0.006 0.114 tation (b) 2010 0.007 0.052 0.034 0.014 0.001 0.005 0.114	2015 0.051 0.012 0.024 0.022 0.052 0.002 0.001 0.003 0.007 0.173 2015 0.013 0.013 0.013 0.071 0.051 0.024 0.024 0.022 0.012 0.012	2020 0.072 0.031 0.023 0.005 0.061 0.004 0.002 0.006 0.009 0.250 2020 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.004 0.003 0.007 0.389 2025 0.037 0.389 2025 0.037 0.128 0.137 0.128 0.137 0.061 0.0052 0.389				
Item Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el. Tramway el. Trolleybus el. Total Table 11-8 Energy col Item Electricity Diesel Gasoline LPG CNG Alcohol Total	Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.025 0.000 0.000 0.005 0.054 pas senge 2000 0.005 0.054 0.028 0.028 0.028 0.028 0.028 0.028 0.028	2005 0.024 0.005 0.000 0.007 0.000 0.003 0.000 0.005	2010 0.034 0.010 0.005 0.014 0.000 0.043 0.001 0.000 0.002 0.006 0.114 tation (b) 2010 0.007 0.052 0.034 0.014 0.001 0.005 0.114	2015 0.051 0.012 0.024 0.022 0.002 0.002 0.001 0.003 0.007 0.173 2015 0.013 0.013 0.015 0.013 0.071 0.015 0.013 0.071 0.024 0.024 0.024 0.022 0.012 0.012	2020 0.072 0.031 0.023 0.005 0.061 0.004 0.002 0.006 0.009 0.250 2020 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.023 0.023	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.004 0.003 0.007 0.388 2025 0.037 0.388 2025 0.037 0.126 0.126 0.126 0.127 0.061 0.0061 0.006				
Item Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el. Tramway el. Trolleybus el. Total Table 11-8 Energy col Item Electricity Diesel Gasoline LPG CNG Alcohol Total Table 11-9 Energy col	Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.025 0.000 0.000 0.005 0.054 pas senge 2000 0.005 0.028 0.018 0.028 0.005 0.028 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005	2005 0.024 0.005 0.000 0.007 0.000 0.003 0.000 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.000 0.005 0.007 0.005 0.005 0.005 0.007 0.007 0.005 0.007 0.0	2010 0.034 0.010 0.005 0.014 0.000 0.043 0.001 0.000 0.002 0.006 0.114 tation (b) 2010 0.007 0.052 0.034 0.014 0.001 0.005 0.114 10.005 0.114 10.005 0.114	2015 0.051 0.012 0.024 0.022 0.052 0.002 0.001 0.003 0.007 0.173 / fuel) 2015 0.013 0.015 0.015 0.015 0.015 0.014 0.024 0.024 0.024 0.024 0.024 0.024	2020 0.072 0.031 0.023 0.005 0.061 0.004 0.002 0.009 0.250 2020 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.023 0.023	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.004 0.003 0.007 0.388 2025 0.037 0.388 2025 0.037 0.126 0.126 0.126 0.127 0.061 0.0061 0.0052 0.388				
Item Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el. Tramway el. Trolleybus el. Total Table 11-8 Energy col Item Electricity Diesel Gasoline LPG CNG Alcohol Total Table 11-9 Energy col Item	Unit GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.025 0.000 0.000 0.005 0.054 pas senge 2000 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.005 0.028 0.005 0.000 0.000 0.005 0.000 0.005 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	2005 0.024 0.005 0.000 0.007 0.000 0.002 0.001 0.000 0.005 0.007 0.005 0.007 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.007 0.007 0.001 0.000 0.001 0.000 0.007 0.001 0.000 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.005 0.007 0.005 0.005 0.005 0.005 0.007 0.005 0.005 0.005 0.005 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.005 0.005 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.0	2010 0.034 0.010 0.005 0.014 0.000 0.043 0.001 0.000 0.002 0.004 0.001 0.002 0.004 0.001 0.005 0.114 0.005 0.114 0.005 0.114 0.005 0.114	2015 0.051 0.012 0.024 0.022 0.002 0.002 0.001 0.003 0.007 0.173 / fuel) 2015 0.013 0.071 0.013 0.071 0.015 0.013 0.071 0.024 0.024 0.024 0.024 0.024 0.024 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.013 0.013 0.013 0.014 0.024 0.002 0.017 0.017 0.018 0.002 0.003 0.007 0.013 0.002 0.002 0.012 0.013 0.002 0.012 0.024 0.002 0.013 0.002 0.012 0.	2020 0.072 0.031 0.023 0.005 0.061 0.004 0.002 0.009 0.250 2020 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.023 0.025 0.023 0.023 0.025 0.023 0.025 0.023 0.025 0.025 0.022 0.025 0.05	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.004 0.003 0.007 0.389 2025 0.037 0.126 0.126 0.126 0.126 0.0061 0.0061 0.0062 0.389				
Item Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el. Tramway el. Trolleybus el. Total Table 11-8 Energy col Item Electricity Diesel Gasoline LPG CNG Alcohol Total Table 11-9 Energy col Item Electricity	Unit GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.025 0.000 0.000 0.000 0.005 0.054 passenge 2000 0.028 0.005 0.028 0.005 0.028 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.005 0.028 0.005 0.005 0.028 0.005 0.005 0.028 0.005 0.005 0.028 0.005 0.005 0.028 0.005 0.005 0.028 0.005 0.005 0.028 0.005 0.005 0.028 0.005 0.005 0.028 0.005 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.000 0.000 0.005 0.028 0.005 0.028 0.000 0.000 0.000 0.000 0.005 0.008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000000 0.00000 0.00000000	2005 0.024 0.005 0.000 0.007 0.000 0.002 0.001 0.000 0.005 0.007 0.005 0.005 0.005 0.005 0.005 0.007 0.007 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.005 0.007 0.007 0.005 0.007 0.007 0.007 0.007 0.005 0.007 0.005 0.007 0.000 0.007 0.000 0.007 0.007 0.005 0.0	2010 0.034 0.010 0.005 0.014 0.000 0.043 0.001 0.000 0.002 0.006 0.114 tation (by 0.004 0.007 0.052 0.034 0.004 0.004 0.004 0.004 0.004 0.005 0.114 tation (by 2010 0.005 0.114	2015 0.051 0.012 0.024 0.002 0.002 0.002 0.001 0.003 0.007 0.173 2015 0.013 0.015 0.013 0.014 0.024 0.024 0.012 0.012 0.012 0.012 0.012 0.013	2020 0.072 0.031 0.023 0.038 0.005 0.061 0.004 0.002 0.002 0.009 0.250 2020 0.022 0.022 0.022 0.022 0.022 0.023 0.023 0.023 0.0250 0.023 0.0250	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.004 0.013 0.007 0.389 2025 0.037 0.126 0.037 0.126 0.038 0.0061 0.0061 0.0062 0.389 0.038				
Item Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el. Tramway el. Trolleybus el. Total Table 11-8 Energy col Item Electricity Diesel Gasoline LPG CNG Alcohol Total Table 11-9 Energy col Item Electricity Steam coal (na)	Unit GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.025 0.000 0.000 0.000 0.005 0.054 passenge 2000 0.028 0.005 0.028 0.005 0.000 0.028 0.005 0.005 0.000 0.005 0.000 0.005 0.005 0.000 0.005 0.005 0.000 0.005 0.005 0.005 0.000 0.005 0	2005 0.024 0.005 0.000 0.007 0.000 0.002 0.001 0.000 0.005 0.005 0.005 0.005 0.005 0.005 0.007 0.007 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.001 0.000 0.005 0.0	2010 0.034 0.010 0.005 0.014 0.000 0.002 0.006 0.114 tation (b) 2010 0.007 0.005 0.114 0.001 0.007 0.005 0.114 tation (b) 2010 0.005 0.114	2015 0.051 0.012 0.024 0.002 0.002 0.002 0.001 0.003 0.007 0.173 2015 0.013 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	2020 0.072 0.031 0.023 0.005 0.061 0.004 0.002 0.009 0.250 0.022 0.022 0.022 0.022 0.023 0.023 0.0250 0.023 0.0250	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.004 0.013 0.007 0.389 2025 0.037 0.126 0.037 0.126 0.038 0.0052 0.389 2025 0.389 2025				
Item Car gasoline Car diesel Car alcohol Car LPG Car electric Bus diesel Bus CNG Metro el. Tramway el. Trolleybus el. Total Table 11-8 Energy col Item Electricity Diesel Gasoline LPG CNG Alcohol Total Table 11-9 Energy col Item Electricity Steam coal (na) Motor fuels	Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 0.018 0.003 0.000 0.025 0.000 0.000 0.000 0.005 0.054 passenge 2000 0.028 0.005 0.028 0.005 0.028 0.028 0.028 0.028 0.005 0.028 0.028 0.028 0.005 0.028 0.028 0.028 0.005 0.028 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.028 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.028 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.000 0.000 0.005 0.005 0.005 0.000 0.000 0.000 0.005 0.000 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.005 0.000 0.005 0.000 0.005 0.005 0.005 0.005 0.000 0.005 0	2005 0.024 0.005 0.000 0.007 0.000 0.002 0.001 0.000 0.005 0.005 0.005 0.005 0.005 0.005 0.007 0.007 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.005 0.007 0.005 0.007 0.005 0.0	2010 0.034 0.010 0.005 0.014 0.000 0.002 0.006 0.114 tation (by 2010 0.007 0.005 0.114 0.007 0.005 0.114 tation (by 2010 0.005 0.114	2015 0.051 0.012 0.024 0.022 0.002 0.001 0.003 0.007 0.173 2015 0.013 0.071 0.015 0.013 0.024 0.002 0.012 0.012 0.012 0.012 0.012 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.0160	2020 0.072 0.031 0.023 0.005 0.061 0.004 0.002 0.002 0.009 0.250 0.022 0.022 0.022 0.022 0.022 0.023 0.023 0.023 0.0250 0.023 0.0250	2025 0.107 0.052 0.061 0.013 0.074 0.006 0.004 0.013 0.007 0.389 2025 0.037 0.126 0.037 0.126 0.038 0.0052 0.389 2025 0.389 2025 0.389				

Figure 3.26. Snapshot of calculated data tables of worksheet "PassIntra-D".

(c) Worksheet "PassInter-D" (Table 12)

This worksheet covers the intercity passenger travel as well as the international and military transportation. The first input data is the intercity distance traveled per person per year (Table 12-1), which, together with the total population from "Demogr-D" worksheet, is used for deriving the intercity travel activity level (10⁹ passenger-kilometers). Secondly, car ownership ratio (ratio of population to total number of cars) and the average intercity distance driven per car per year are entered (Table 12-2). Based on the previous information the model calculates the intercity travel activity performed with cars; the remaining intercity passenger travel activity is assumed to be performed with public transportation modes (Table 12-4). The other input data for this Transportation subsector refer to the load factors of intercity transportation modes (Table 12-3), split (%) by car types of intercity travel activity performed by car (Table 12-5), modal split of public intercity passenger transportation (Table 12-7), and energy intensities of various modes of transport, expressed in natural units (Table 12-9).

The additional data calculated by the model for intercity travel and stored in this worksheet include the travel activity levels (10⁹ passenger-km) by car type (Table 12-6) and by public mode type (Table 12-8); energy intensities of these modes expressed in kWh/p-km (Table 12-10); and energy consumption of intercity passenger transportation by mode (Table 12-11), by fuel type (Table 12-12) and by fuel group: electricity, steam coal and motor fuels (Table 12-13).

Regarding the international and military transportation, the user has to enter into this worksheet the values of two input coefficients relating the corresponding motor fuel consumption to the total GDP. The model then calculates directly the energy consumption for this type of transportation activity and stores it in the cells meant for this derived variable (Table 12-14).

In the end this worksheet provides the results of the model-based calculations for the passenger (intercity and intracity) and international & military transportation subsectors (Table 12-15), giving total final energy demand for these activities split by fuel group: electricity, steam coal and motor fuels.

The size of Table 12 depends on the number of intercity passenger transportation modes selected by the user in worksheet "Defs" and on the number of fuels used by these transportation modes. A snapshot of input data tables of this worksheet is shown in Figure 3.27 while calculated data tables are illustrated in Figure 3.28.

(d) Worksheet "FIN_Trp-D" (Table 13)

Finally, the worksheet "FIN_Trp-D" sums up the results of all transportation activities and provides information on (i) total final energy demand of Transportation sector by fuel type (Table 13-1), fuel group type: electricity, steam coal and motor fuels (Table 13-3) and subsector: freight, passenger intracity, passenger intercity, and international & military (Table 13-5) (ii) corresponding percentage shares in the total transportation energy of each fuel type (Table 13-2), fuel group type (Table 13-4) and subsector (Table 13-6). Figure 3.29 shows the content of the entire worksheet "FIN Trp-D".

3.3.8 Worksheets for household sector (Tables 14 to 16)

The energy demand analysis of the Household sector is covered by three worksheets: "US_HH_Ur-D", meant for entering the input data for urban dwellings and also for showing the results of the model-based calculations for the useful energy demand of this Household subsector; "US_HH_Rr-D", serving the same purpose but for the rural dwellings; and "FIN_HH-D", which summarizes the overall energy demand analysis results for the Household sector. As already mentioned in Section 2, the categories of energy use considered

in the Household sector are: space heating, water heating, cooking, air conditioning and secondary appliances (refrigerators, lighting, washing machines etc.). The energy demand for water heating, cooking and secondary appliances is calculated based on average specific energy consumptions for all dwellings of the Household subsector (urban or rural) while for space heating and air conditioning the energy demand is calculated separately for the dwelling types defined by the user in worksheet "Defs" for each subsector.

Intercity passeng	er transportation										
Table 12-1 Distance	travelled	~~~					0005				
Item Dist isteration	Unit	2000	2005	2010	2015	2020	2025				
Dist.intercity	[km/prsn/yr]	1500,000	1700.000	2000.000	2400.000	2900.000	3300.000				
Total	[10^9 pkm]	28.725	36.833	48.561	64,641	85,815	106.239				
Table 12-2 Factors fo	r intercity passenger (transport b	y car								
ltem	Unit	2000	2005	2010	2015	2020	2025				
Carownership	[person/car]	50.000	45.000	40.000	35,000	30.000	20.000				
Car-kilometers	[km/car/yr]	5000.000	5500.000	6000.000	6500.000	7000.000	8000.000				
Table 12-3 Load factors											
ltem	Unit	2000	2005	2010	2015	2020	2025				
Airplane	[‰ccupied]	70.000	70.000	70.000	70.000	70.000	70.000				
Cars	[prsn/car]	3.000	3.000	3,000	3,000	3.000	3.000				
Buslarge	[prsn/Bus large]	45.000	43.000	40.000	37.000	35.000	35.000				
Bussmall	(prsn/Bus small)	15.000	15.000	15.000	15.000	15.000	15.000				
Train diesel	[prsn/Train diesel]	500.000	500.000	500.000	500.000	500.000	500.000				
Train electric	[prsn/Train electric]	800.000	800.000	800.000	800.000	800.000	800.000				
Train steam	[prsn/Train steam]	200.000	200.000	200.000	200.000	200.000	200.000				
Table 12-5 Modal spli	it of cars intercity pas	senger tran	sportation								
tem	Unit	2000	2005	2010	2015	2020	2025				
Car gasoline	[%]	60.000	60.000	58.000	56.000	53.000	50.000				
Car diesel	[%]	40.000	40.000	40.000	40.000	40.000	40.000				
Car alcohol	巴甸	0.000	0.000	2,000	4.000	7.000	10.000				
	12										
Table 12-7 Modal spli	it of public intercity pa	nssenger tra	ansportatio	on							
Table 12-7 Modal spli Item	t of public intercity pa Unit	nssenger tra 2000	ansportatio 2005	on 2010	2015	2020	2025				
Table 12-7 Modal spli Item Airplane	it of public intercity pa Unit	155enger tra 2000 5.000	ansportatio 2005 6.000	on 2010 7.000	2015 8.000	2020 9.000	2025 10.000				
Table 12-7 Modal spli Item Airplane Buslarge	t of public intercity pa Unit ্যির ্যির	1 ssenger tr 2000 5.000 35.000	ansportatio 2005 6.000 34.000	2010 7.000 33.000	2015 8.000 32.000	2020 9.000 31.000	2025 10.000 31.000				
Table 12-7 Modal spli Item Airplane Buslarge Bussmall	it of public intercity pa Unit পিন্ধ পিন্ধ পিন্ধ	2000 5.000 35.000 30.000	ansportatio 2005 6.000 34.000 31.000	2010 7.000 33.000 32.000	2015 8.000 32.000 33.000	2020 9.000 31.000 34.000	2025 10.000 31.000 34.000				
Table 12-7 Modal spli Item Air plane Bus large Bus small Train diesel	it of public intercity pa Unit [%] [%] [%] [%] [%]	2000 5.000 35.000 30.000 15.000	ansportatio 2005 6.000 34.000 31.000 13.000	2010 7.000 33.000 32.000 11.000	2015 8.000 32.000 33.000 9.000	2020 9.000 31.000 34.000 8.000	2025 10.000 31.000 34.000 7.000				
Table 12-7 Modal spli Item Air plane Bus large Bus small Train diesel Train electric	it of public intercity pa Unit [%] [%] [%] [%] [%] [%]	2000 5.000 35.000 30.000 15.000 10.000	ansportati 2005 6.000 34.000 31.000 13.000 12.000	2010 7.000 33.000 32.000 11.000 14.000	2015 8.000 32.000 33.000 9.000 16.000	2020 9.000 31.000 34.000 8.000 17.000	2025 10.000 31.000 34.000 7.000 18.000				
Table 12-7 Modal spli Item Air plane Bus large Bus small Train diesel Train electric Train steam	it of public intercity pa Unit [%] [%] [%] [%] [%] [%] [%]	15560 1500 2000 35.000 30.000 15.000 10.000 5.000	ansportati 2005 6.000 34.000 31.000 13.000 12.000 4.000	2010 7.000 33.000 32.000 11.000 14.000 3.000	2015 8.000 32.000 33.000 9.000 16.000 2.000	2020 9.000 31.000 34.000 8.000 17.000 1.000	2025 10.000 31.000 34.000 7.000 18.000 0.000				
Table 12-7 Modal spli tem Air plane Bus large Bus small Train diesel Train electric Train steam Table 12-9 Energy int	it of public intercity pa Unit 1%9 1%9 1%9 1%9 1%9 1%9 1%9 1%9 1%9 1%9	2000 5.000 35.000 30.000 15.000 10.000 5.000 senger trai	ansportatio 2005 34,000 31,000 13,000 12,000 4,000 nsportation	on 2010 7.000 33.000 32.000 11.000 14.000 3.000 n (natural u	2015 8.000 32.000 33.000 9.000 16.000 2.000 nits)	2020 9.000 31.000 34.000 8.000 17.000 1.000	2025 10.000 31.000 34.000 7.000 18.000 0.000				
Table 12-7 Modal spli tem Air plane Bus large Bus small Train diesel Train electric Train steam Table 12-9 Energy int tem	t of public intercity pa Unit 1%4 1%4 1%4 1%4 1%4 1%4 1%4 1%4 1%4 1%4	2000 5.000 35.000 15.000 15.000 10.000 5.000 senger trai 2000	ansportatio 2005 6.000 34.000 31.000 13.000 12.000 4.000 nsportation 2005	2010 7.000 33.000 32.000 11.000 14.000 3.000 0 (natural u 2010	2015 8.000 32.000 33.000 9.000 16.000 2.000 nits) 2015	2020 9.000 31.000 34.000 8.000 17.000 1.000 2020	2025 10.000 31.000 7.000 18.000 0.000 2025				
Table 12-7 Modal spli tem Air plane Bus large Bus small Train diesel Train electric Train steam Table 12-9 Energy int tem Air plane	t of public intercity pa Unit [%] [%] [%] [%] [%] ensity of intercity pas Unit [//1000seatkm]	ssenger tr 2000 5.000 35.000 15.000 10.000 5.000 senger trai 2000 87.500	ansportatio 2005 6.000 34.000 13.000 12.000 4.000 nsportation 2005 85.000	2010 7.000 33.000 32.000 11.000 14.000 3.000 0 (natural u 2010 82.500	2015 8.000 32.000 9.000 16.000 2.000 mits) 2015 82.000	2020 9.000 31.000 34.000 8.000 17.000 1.000 2020 77.500	2025 10.000 31.000 7.000 18.000 0.000 2025 75.000				
Table 12-7 Modal spli tem Air plane Bus large Bus small Train diesel Train diesel Train electric Train steam Table 12-9 Energy int tem Air plane Car gasoline	it of public intercity pa Unit [%] [%] [%] [%] [%] ensity of intercity pas Unit [//1000seatkm] [//100km]	ssenger tra 2000 5.000 35.000 15.000 10.000 5.000 senger tra 2000 87.500 9.500	ansportatio 2005 6.000 34.000 13.000 12.000 4.000 nsportation 2005 85.000 8.000	2010 7.000 33.000 32.000 11.000 14.000 3.000 0 (natural u 2010 82.500 8.000	2015 8.000 32.000 9.000 16.000 2.000 nits) 2015 82.000 8.000	2020 9.000 31.000 34.000 8.000 17.000 1.000 2020 77.500 8.000	2025 10.000 31.000 7.000 18.000 0.000 2025 75.000 8.000				
Table 12-7 Modal spli tem Air plane Bus large Bus small Train diesel Train diesel Train steam Table 12-9 Energy int tem Air plane Car gasoline Car diesel	it of public intercity pa Unit [%] [%] [%] [%] [%] ensity of intercity pas Unit [//100seatkm] [//100km]	ssenger tra 2000 5.000 35.000 15.000 10.000 5.000 5.000 senger tra 2000 87.500 9.500 9.500	ansportatio 2005 6.000 34.000 13.000 12.000 4.000 nsportation 2005 85.000 8.000 7.000	2010 7.000 33.000 32.000 11.000 14.000 3.000 0 (natural u 2010 82.500 8.000 7.000	2015 8.000 32.000 9.000 16.000 2.000 18.000 2.000 82.000 8.000 7.000	2020 9.000 31.000 34.000 17.000 17.000 2020 77.500 8.000 7.000	2025 10.000 31.000 7.000 18.000 0.000 2025 75.000 8.000 7.000				
Table 12-7 Modal spli tem Air plane Bus large Bus small Train diesel Train electric Train steam Table 12-9 Energy int tem Air plane Car gasoline Car diesel Car alcohol	it of public intercity pa Unit [%] [%] [%] [%] [%] ensity of intercity pas Unit [//100seatkm] [//100km] [//100km]	ssenger tra 2000 5.000 35.000 15.000 10.000 5.000 5.000 87.500 9.500 9.500 9.000 11.000	ansportation 2005 6.000 34.000 13.000 12.000 4.000 asportation 2005 85.000 8.000 7.000 11.000	2010 7.000 33.000 32.000 11.000 14.000 3.000 0 (natural u 2010 82.500 8.000 7.000 11.000	2015 8.000 32.000 9.000 16.000 2.000 18.000 2.000 82.000 8.000 7.000 11.000	2020 9.000 31.000 34.000 17.000 17.000 1.000 2020 77.500 8.000 7.000 11.000	2025 10.000 31.000 7.000 18.000 0.000 2025 75.000 8.000 7.000 11.000				
Table 12-7 Modal spli tem Air plane Bus large Bus small Train diesel Train electric Train steam Table 12-9 Energy int tem Air plane Car gasoline Car diesel Car alcohol Bus large	it of public intercity pa Unit [%] [%] [%] [%] [%] ensity of intercity pas Unit [//000seatkm] [//100km] [//100km] [//100km]	ssenger tra 2000 5.000 35.000 15.000 10.000 5.000 5.000 87.500 9.500 9.500 9.500 11.000 30.000	ansportation 2005 6.000 34.000 13.000 12.000 4.000 nsportation 2005 85.000 8.000 7.000 11.000 30.000	2010 7.000 33.000 32.000 11.000 14.000 3.000 0 (natural u 2010 82.500 8.000 7.000 11.000 30.000	2015 8.000 32.000 9.000 16.000 2.000 mits) 2015 82.000 82.000 8.000 7.000 11.000 30.000	2020 9.000 31.000 34.000 17.000 1.000 2020 77.500 8.000 7.000 11.000 30.000	2025 10.000 31.000 7.000 18.000 0.000 2025 75.000 8.000 7.000 11.000 30.000				
Table 12-7 Modal splitem Air plane Bus large Bus small Train diesel Train electric Train steam Table 12-9 Energy int Item Air plane Car gasoline Car diesel Car alcohol Bus large Bus small	it of public intercity pa Unit [%] [%] [%] [%] [%] [%] [%] ensity of intercity pas Unit [//000seatkm] [//100km] [//100km] [//100km] [//100km]	ssenger tra 2000 5.000 35.000 15.000 15.000 5.000 senger tra 2000 87.500 9.500 9.500 11.000 30.000 25.000	ansportation 2005 6,000 34,000 13,000 12,000 4,000 nsportation 2005 85,000 8,000 7,000 11,000 30,000 25,000 25,000	2010 7,000 33,000 32,000 11,000 14,000 3,000 0 (natural u 2010 82,500 8,000 7,000 11,000 30,000 25,000	2015 8.000 32.000 9.000 16.000 2.000 mits) 2015 82.000 8.000 7.000 11.000 30.000 25.000	2020 9.000 31.000 34.000 17.000 1.000 2020 77.500 8.000 77.500 11.000 30.000 25.000 25.000	2025 10.000 31.000 34.000 7.000 18.000 0.000 2025 75.000 8.000 7.000 11.000 30.000 25.000				
Table 12-7 Modal splitem Air plane Bus large Bus small Train diesel Train electric Train steam Table 12-9 Energy int Item Air plane Car gasoline Car alcohol Bus large Bus small Train diesel	t of public intercity pa Unit [%] [%] [%] [%] [%] [%] ensity of intercity pas Unit [//100km] [//100km] [//100km] [//100km] [//100km] [//100km]	ssenger tra 2000 35.000 30.000 15.000 10.000 5.000 8enger tra 2000 9.000 9.500 9.000 11.000 30.000 250.000	ansportation 2005 6.000 34.000 31.000 13.000 12.000 4.000 nsportation 2005 8.000 7.000 11.000 30.000 250.000 250.000	2010 7.000 33.000 32.000 11.000 14.000 3.000 14.000 2010 8.000 7.000 11.000 30.000 25.000 250.000	2015 8.000 32.000 33.000 9.000 16.000 2.000 16.000 2.000 8.000 7.000 11.000 30.000 25.000 250.000	2020 9.000 31.000 34.000 17.000 17.000 2020 77.500 8.000 7.000 11.000 30.000 25.000 250.000	2025 10.000 31.000 34.000 7.000 18.000 0.000 2025 75.000 8.000 7.000 11.000 30.000 25.000 250.000				
Table 12-7 Modal splittem Air plane Bus large Bus small Train diesel Train electric Train steam Table 12-9 Energy int Item Air plane Car gasoline Car alcohol Bus large Bus small Train diesel	t of public intercity pa Unit [%] [%] [%] [%] [%] [%] ensity of intercity pas Unit [//100km] [//100km] [//100km] [//100km] [//100km] [//100km] [//100km] [//100km] [//100km] [//100km]	ssenger tra 2000 5.000 35.000 30.000 15.000 10.000 5.000 87.500 9.500 9.500 9.500 11.000 30.000 250.000 650.000 650.000 650.000	ansportation 2005 6.000 34.000 31.000 13.000 12.000 4.000 0 0 0 0 0 0 0 0 0 0 0 0	2010 7,000 33,000 32,000 11,000 14,000 14,000 2010 82,500 8,000 7,000 11,000 30,000 25,000 250,000 650,000	2015 8.000 32.000 33.000 9.000 16.000 2.000 16.000 2.000 11.000 30.000 25.000 250.000 650.000 650.000	2020 9,000 31,000 34,000 8,000 17,000 17,000 2020 77,500 8,000 7,000 11,000 30,000 25,000 250,000 650,000 650,000	2025 10.000 31.000 34.000 7.000 18.000 0.000 2025 75.000 8.000 7.000 11.000 30.000 25.000 250.000				
Table 12-7 Modal splitem Air plane Bus large Bus small Train diesel Train electric Train steam Air plane Car alcohol Bus large Bus small Train diesel Train steam Car alcohol Bus large Bus large Bus large Bus large Bus small Train diesel Train diesel Train diesel Train diesel Train diesel	t of public intercity pa Unit [%] [%] [%] [%] [%] [%] ensity of intercity pas Unit [/100km] [/100km] [/100km] [/100km] [/100km] [/100km] [/100km] [/100km] [/100km] [/100km] [/100km] [/100km] [/100km] [/100km] [/100km] [/100km] [/100km] [/100km] [/100km]	ssenger tra 2000 35.000 30.000 15.000 5.000 5.000 87.500 9.500 9.500 9.500 9.500 9.500 9.500 9.500 9.500 9.500 9.500 11.000 250.000 650.000	ansportatio 2005 6.000 34.000 31.000 13.000 12.000 4.000 0 0 0 0 0 0 0 0 0 0 0 0	2010 7,000 33,000 32,000 11,000 14,000 14,000 2010 82,500 82,500 8,000 7,000 7,000 11,000 30,000 25,000 650,000 1315,000	2015 8.000 32.000 33.000 9.000 16.000 2.000 16.000 16.000 16.000 17.000 7.000 7.000 17.000 25.000 25.000 650.000 1315.000	2020 9,000 31,000 34,000 8,000 17,000 17,000 77,500 8,000 7,000 11,000 30,000 25,000 250,000 650,000	2025 10.000 31.000 34.000 7.000 18.000 0.000 2025 75.000 75.000 7.000 7.000 11.000 30.000 25.000 250.000 650.000				
Table 12-7 Modal splitem Air plane Bus large Bus small Train diesel Train steam Table 12-9 Energy int Item Air plane Car gasoline Car diesel Car diesel Car diesel Train steam Table 12-14 Energy c	t of public intercity pa Unit [%] [%] [%] [%] [%] [%] [%] ensity of intercity pas Unit [/100seatkm] [/100km]	ssenger tra 2000 5.000 35.000 15.000 10.000 5.000 senger tran 2000 87.500 9.500 9.500 9.500 11.000 25.000 250.000 1315.000 1315.000 1315.000	ansportation 2005 6.000 34.000 31.000 13.000 12.000 4.000 0 0 0 0 0 0 0 0 0 0 0 0	2010 7.000 33.000 32.000 11.000 14.000 3.000 2010 82.500 8.000 7.000 11.000 25.000 25.000 25.000 25.000 1315.000	2015 8.000 32.000 33.000 9.000 16.000 2.000 16.000 2.000 8.000 7.000 11.000 25.000 25.000 650.000 13.15.000 00.45	2020 9.000 31.000 34.000 8.000 17.000 1.000 2020 77.500 8.000 77.500 8.000 11.000 25.000 250.000 650.000 1315.000	2025 10.000 31.000 7.000 18.000 0.000 2025 75.000 8.000 7.000 11.000 30.000 25.000 250.000 680.000 1315.000				
Table 12-7 Modal splittem Air plane Bus large Bus small Train diesel Train electric Train steam Air plane Car gasoline Car diesel Car diesel Car alcohol Bus small Train diesel Train diesel Car diesel Car alcohol Bus small Train diesel Train diesel Train steam Table 12-14 Energy c tem Car ble 12-14 Energy c	t of public intercity pa Unit [%] [%] [%] [%] [%] [%] [%] ensity of intercity pas Unit [/100seatkm] [/100km]	ssenger tra 2000 5.000 35.000 15.000 10.000 5.000 5.000 87.500 9.500 9.500 9.500 9.500 9.500 9.500 11.000 250.000 250.000 1315.000 1315.000	ansportation 2005 6.000 34.000 31.000 13.000 12.000 4.000 05 85.000 85.000 85.000 7.000 11.000 250.000 250.000 250.000 1315.000 military tra 2005	2010 7,000 33,000 32,000 11,000 14,000 3,000 2010 82,500 8,000 7,000 11,000 250,000 250,000 250,000 250,000 1315,000 1315,000	2015 8.000 32.000 33.000 9.000 16.000 2.000 16.000 2.000 8.000 7.000 11.000 250.000 250.000 250.000 1315.000 1315.000 015	2020 9.000 31.000 34.000 8.000 17.000 17.000 77.500 8.000 77.500 8.000 77.500 8.000 250.000 250.000 250.000 250.000 1315.000	2025 10.000 31.000 7.000 18.000 0.000 2025 75.000 8.000 7.000 11.000 30.000 250.000 250.000 250.000 1315.000				
Table 12-7 Modal splitem Air plane Bus large Bus small Train diesel Train electric Train steam Table 12-9 Energy int Item Air plane Car gasoline Car alcohol Bus small Train diesel Car alcohol Bus small Train diesel Train diesel Train diesel Train diesel Train diesel Train steam Table 12-14 Energy c Item Constant	t of public intercity pa Unit [%] [%] [%] [%] [%] [%] [%] ensity of intercity pas Unit [/100seatkm] [/100km]	ssenger tra 2000 5.000 35.000 15.000 10.000 5.000 5.000 87.500 9.500 9.500 9.500 9.500 11.000 250.000 250.000 1315.000 1315.000 1315.000 13.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000000	ansportatio 2005 6,000 34,000 13,000 13,000 12,000 4,000 asportation 2005 85,000 8,000 7,000 11,000 250,000 250,000 650,000 1315,000 military tra 2005 0,010 0,010	2010 7,000 33,000 32,000 11,000 14,000 3,000 82,500 8,000 7,000 11,000 30,000 250,000 250,000 650,000 1315,000 1315,000 msportatio	2015 8,000 32,000 33,000 16,000 2,000 mits) 2015 82,000 82,000 82,000 11,000 30,000 250,000 650,000 1315,000 1315,000 00 00 0,0000 0,000 0,000 0,000 0,000	2020 9,000 31,000 34,000 17,000 17,000 77,500 8,000 77,500 8,000 77,500 2020 11,000 30,000 25,000 25,000 650,000 1315,000 1315,000 2020 0,010 0,010	2025 10.000 31.000 7.000 18.000 0.000 2025 75.000 8.000 7.000 11.000 250.000 250.000 250.000 1315.000				
Table 12-7 Modal splitem Air plane Bus large Bus small Train diesel Train diesel Train steam Table 12-9 Energy int Item Air plane Car gasoline Car diesel Car diesel Train diesel <t< td=""><td>t of public intercity pa Unit [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]</td><td>ssenger tra 2000 5.000 36.000 15.000 10.000 5.000 senger tra 2000 87.500 9.500 9.500 25.000 25.000 250.000 11.000 13.15.000 13.15.000 13.15.000 13.15.000 0.010 0.010 0.010 0.020</td><td>ansportatio 2005 6,000 34,000 31,000 13,000 12,000 4,000 nsportation 2005 8,000 7,000 11,000 25,000 25,000 25,000 25,000 0,000 1315,000 military tra 2005 0,010 0,030</td><td>2010 7,000 33,000 32,000 11,000 14,000 3,000 2010 82,500 8,000 7,000 11,000 30,000 25,000 25,000 250,000 250,000 250,000 1315,000 1315,000 1315,000 1315,000</td><td>2015 8,000 32,000 33,000 16,000 2,000 16,000 16,000 2,000 8,000 7,000 11,000 30,000 25,000 25,000 650,000 1315,000 1315,000 015 0,010 0,030</td><td>2020 9,000 31,000 34,000 17,000 17,000 2020 77,500 8,000 77,500 8,000 77,500 8,000 25,000 20,000</td><td>2025 10.000 31.000 34.000 7.000 18.000 0.000 2025 75.000 8.000 7.000 11.000 30.000 250.000 250.000 650.000 1315.000 250.000 1315.000</td></t<>	t of public intercity pa Unit [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]	ssenger tra 2000 5.000 36.000 15.000 10.000 5.000 senger tra 2000 87.500 9.500 9.500 25.000 25.000 250.000 11.000 13.15.000 13.15.000 13.15.000 13.15.000 0.010 0.010 0.010 0.020	ansportatio 2005 6,000 34,000 31,000 13,000 12,000 4,000 nsportation 2005 8,000 7,000 11,000 25,000 25,000 25,000 25,000 0,000 1315,000 military tra 2005 0,010 0,030	2010 7,000 33,000 32,000 11,000 14,000 3,000 2010 82,500 8,000 7,000 11,000 30,000 25,000 25,000 250,000 250,000 250,000 1315,000 1315,000 1315,000 1315,000	2015 8,000 32,000 33,000 16,000 2,000 16,000 16,000 2,000 8,000 7,000 11,000 30,000 25,000 25,000 650,000 1315,000 1315,000 015 0,010 0,030	2020 9,000 31,000 34,000 17,000 17,000 2020 77,500 8,000 77,500 8,000 77,500 8,000 25,000 20,000	2025 10.000 31.000 34.000 7.000 18.000 0.000 2025 75.000 8.000 7.000 11.000 30.000 250.000 250.000 650.000 1315.000 250.000 1315.000				

Figure 3.27. Snapshot of input data tables of worksheet "PassInter-D".

Lable 42.4 Medal onli	it of intersity passons	or transmort	tation								
Table 12-4 Modal spir	t of intercity passeng	2000	2005	2040	2015	2020	20.25				
Core	[10/9 okm]	5745	2003	10.924	45,006	2020	2023				
Public	[10.5 pkm]	22,980	28,889	37.627	49.635	65 101	67.607				
Table 12-6 Cars inter	city passenger transp	ortation by	car type								
Item	Unit	2000	2005	2010	2015	2020	2025				
Car gasoline	[10^9 pkm]	3 447	4.767	6.336	8,403	10.978	19,316				
Cardiesel	[10^9 pkm]	2 298	3,178	4.370	6.002	8.286	15.453				
Caralcohol	[10^9 pkm]	0.000	0.000	0.218	0.600	1.450	3,863				
Table 12-8 Public intercity passenger transportation by mode											
ltem	Unit	2000	2005	2010	2015	2020	2025				
Airplane	[10^9 pkm]	1.1.49	1,733	2.634	3.971	5.859	6.761				
Buslarge	[10^9 pkm]	8.043	9,822	12,417	15,883	20.181	20.958				
Bussmall	[10^9 pkm]	6.894	8.955	12.041	16.379	22.134	22.986				
Train diesel	[10^9 pkm]	3 4 4 7	3,7,56	4139	4,467	5,208	4.732				
Train electric	[10^9 pkm]	2.2.98	3.467	5268	7.942	11.067	12.169				
Train steam	[10^9 pkm]	1149	1.1.56	1129	0.993	0.651	0.00				
Table 12-10 Energy in Item Air plane	ntensity of intercity pa Unit [kWh/pkm]	2000 1.094	ansportatio 2005 1.063	on (energy 2010 1.032	units) 2015 1.025	2020	2025				
Car gasoline Car diocol	IKWO/pkm	0.297	0.250	0.250	0.250	0250	0.250				
Car dieser	[KWW//PKm]	0.300	0 234	0.234	0.234	0234	0 234				
	KWh/pkm	0.225	0 225	0.225	0.225	0.225	0 225				
Bustarge	[KWh/pKm]	0.067	0.070	0.075	0.081	0.086	0.086				
Bussmall	[kwh/pkm]	0.167	0.167	0.167	0.167	0.167	0.167				
Train diesel	[kWh/pkm]	0.050	0.050	0.050	0.050	0.050	0.050				
Train electric	[kWh/pkm]	800.0	800.0	0.008	0.008	800.0	800.0				
Train steam	[kWh/pkm]	0.535	0.535	0.535	0.535	0.535	0.535				
Table 12-11 Energy c Item Picplace	onsumption of interci	ty pa sseng 2000 0.144	er transpor 2005	2010 0 210	2015	2020	2025				
Car gasoline	GWb	0.117	0.126	0.191	0.400	0.212	0.551				
Car gasoline Car diesel	GWa	0.079	0.085	0.101	0.160	0.221	0.412				
Caralcobol	GWG	0.000	0.000	0.006	0.015	0.027	0.000				
Pus loso	GWb	0.061	0.079	0.000	0.147	0.109	0 205				
Bus small	GWS	0.121	0.171	0.220	0.147	0.190	0 420				
Tenin diasal	CW6	0.030	0.021	0.024	0.028	0.922	0.450				
Train dieser	GWA	0.002	0.002	0.024	0.020	0030	0.027				
Train electric	1 Ovva		0 0031				0.027				
	GMA	0.002	0.071	0.000	0.007	0010	0.027				
Total GWa 0.624 0.775 1.046 1.433 1.919 2.468 Table 12-12 Energy consumption of intercity passenger transportation (by fuel)											
Table 12-12 Energy c	GWa GWa consumption of interci	0.002 0.070 0.624 ty pa sseng	0.071 0.775 er transpor 2005	0.005 0.069 1.046 tation (by	0.007 0.061 1.433 fuel)	0D10 0D40 1,919 2020	0 027 0 011 0 000 2 468				
Table 12-12 Energy c Item	GWa GWa consumption of interci	0.002 0.070 0.624 ty pa sseng 2000	0 D71 0.775 er transpor 2005	0.005 0.069 1.046 tation (by 2010	0.007 0.061 1.433 fuel) 2015	0010 0040 1,919 2020	0 027 0 011 0 000 2 468 2025				
Table 12-12 Energy c Item Electricity	GWa GWa onsumption of interci Unit GWa	0.002 0.070 0.624 ty pa sseng 2000 0.002	0 D71 0.775 er transpor 2005 0 D03	0.005 0.069 1.046 tation (by 2010 0.005	0.007 0.061 1.433 fuel) 2015 0.007	2020 0.040	0 027 0 011 0 000 2 468 2025 0 011				
Table 12-12 Energy c Item Electricity Steam coal	GWa GWa onsumption of interci Urit GWa GWa	0.002 0.624 ty pa sseng 2000 0.002 0.002	0 D71 0 .775 er transpor 2005 0 D03 0 D71	0.005 0.069 1.046 tation (by 2010 0.005 0.069	0.007 0.061 1.433 fuel) 2015 0.007 0.061	2020 0.040 1.919 2020 0.010 0.040	0.027 0.011 0.000 2.468 2025 0.011 0.000				
Table 12-12 Energy c Item Electricity Steam coal Diesel	GWa GWa consumption of interci Urit GWa GWa GWa	0.002 0.624 ty pa sseng 2000 0.002 0.002 0.070 0.291	0 D71 0.775 er transpor 2005 0 D03 0 D71 0 355	1.005 0.069 1.046 tation (by 2010 0.005 0.069 0.476	0.007 0.061 1.433 fuel) 2015 0.007 0.061 0.645	0D10 0D40 1,919 2020 0D10 0D40 0.870	0 027 0 011 0 000 2 468 2025 0 011 0 000 1 082				
Table 12-12 Energy c Item Electricity Steam coal Diesel Gasoline	GWa GWa Unit OWa GWa GWa GWa	0.002 0.624 ty pa sseng 2000 0.002 0.070 0.291 0.117	0 D71 0.775 er transpor 2005 0 D03 0 D71 0 355 0.136	0.005 0.069 1.046 tation (by 2010 0.005 0.069 0.476 0.181	0.007 0.061 1.433 fuel) 2015 0.007 0.061 0.645 0.240	0010 0040 1919 2020 0010 0040 0870 0.313	0 027 0 011 0 000 2 468 2025 0 011 0 000 1 082 0 551				
Table 12-12 Energy c Item Electricity Steam coal Diesel Gasoline Jetfuel	GWa GWa Unit GWa GWa GWa GWa GWa GWa	0.0070 0.624 ty pa sseng 2000 0.002 0.070 0.291 0.117 0.144	0 071 0.775 er transpor 2005 0 003 0 071 0 355 0.136 0 210	1.045 0.069 1.046 tation (by 2010 0.005 0.069 0.476 0.181 0.310	0.007 0.061 1.433 fuel) 2015 0.007 0.061 0.645 0.240 0.465	0.010 0.040 1.919 2020 0.010 0.040 0.870 0.313 0.648	0 027 0 011 0 000 2 468 2025 0 011 0 000 1 082 0 551 0 724				
Table 12-12 Energy c Item Electricity Steam coal Diesel Gasoline Jetfuel Alcohol	GWa GWa Onsumption of interci Unit GWa GWa GWa GWa GWa GWa GWa	0.000 0.624 ty pa sseng 2000 0.002 0.000 0.291 0.117 0.144 0.000	0 071 0.775 er transpor 2005 0 003 0 071 0 365 0.138 0 210 0 000	0.005 0.069 1.046 tation (by 2010 0.005 0.069 0.476 0.181 0.310 0.006	0.001 0.061 1.433 2015 0.007 0.061 0.645 0.240 0.465 0.015	0010 0040 1.919 2020 0010 0040 0.870 0.313 0.648 0037	0 027 0 011 0 000 2 468 2025 0 011 0 000 1 082 0 551 0 724 0 099				
Table 12-12 Energy c Item Electricity Steam coal Diesel Gasoline Jetfuel Alcohol Total	GWa GWa Unit Unit GWa GWa GWa GWa GWa GWa GWa GWa	0.000 0.624 ty pa sseng 2000 0.002 0.070 0.291 0.117 0.144 0.000 0.624	0 071 0 775 er transpor 2005 0 003 0 071 0 385 0 138 0 210 0 000 0 775	0.009 0.069 1.046 tation (by 2010 0.005 0.069 0.476 0.181 0.310 0.006 1.046	0.007 0.061 1.433 fuel) 2015 0.007 0.061 0.645 0.240 0.465 0.015 1.433	0010 0040 1,919 2020 0,010 0,040 0,870 0,313 0,648 0,037 1,919	0 027 0 011 0 000 2 468 2025 0 011 0 000 1 082 0 .551 0 .724 0 099 2 468				
Table 12-12 Energy c Item Electricity Steam coal Diesel Gasoline Jetfuel Alcohol Total Table 12-13 Energy c	GWa GWa Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	0.000 0.624 ty pa sseng 2000 0.002 0.070 0.291 0.117 0.144 0.000 0.624 ty pa sseng	0 071 0 775 er transpor 2005 0 003 0 071 0 355 0 136 0 210 0 000 0 775 er transpor	0.005 0.069 1.046 tation (by 2010 0.005 0.069 0.476 0.181 0.310 0.006 1.046 tation inte	0.007 0.061 1.433 fuel) 2015 0.007 0.061 0.645 0.240 0.465 0.015 1.433 rcity (by fu	2020 0.040 0.010 0.010 0.040 0.313 0.648 0.037 1.319 el group)	0 027 0 0111 0 000 2 468 0 011 0 000 1 082 0 551 0 724 0 099 2 468				
Table 12-12 E nergy c Item Electricity Steam coal Diesel Gasoline Jet fuel Alcohol Total Table 12-13 E nergy c Item	GWa GWa Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	0.000 0.624 ty pa sseng 2000 0.002 0.000 0.291 0.117 0.144 0.000 0.624 ty pa sseng 2000	0 071 0 .775 er transpor 2005 0 003 0 071 0 355 0 .136 0 210 0 000 0 .775 er transpor 2005	0.005 0.069 1.046 tation (by 2010 0.005 0.069 0.476 0.181 0.310 0.006 1.046 1.046 tation inte 2010	0.001 0.061 1.433 fuel) 2015 0.007 0.061 0.645 0.240 0.465 0.015 1.433 ercity (by fu	0010 0040 1,919 2020 0010 0040 0.970 0.313 0.648 0.037 1,919 2020	0 027 0 011 0 000 2 468 2025 0 011 0 000 1 082 0 551 0 724 0 099 2 468 2025				
Table 12-12 Energy c Item Electricity Steam coal Diesel Gasoline Jetfuel Alcohol Total Table 12-13 Energy c Item Electricity	GWa GWa Unit Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	0.000 0.624 ty pa sseng 2000 0.000 0.000 0.291 0.117 0.144 0.000 0.624 ty pa sseng 2000 0.002	0 071 0 775 er transpor 2005 0 003 0 071 0 365 0 136 0 210 0 000 0 775 er transpor 2005 0 003	0.005 0.069 1.046 tation (by 2010 0.005 0.069 0.476 0.181 0.310 0.006 1.046 tation inte 2010 0.005	0.007 0.061 1.433 2015 0.007 0.061 0.0645 0.240 0.465 0.240 0.465 0.015 1.433 creity (by fu 2015 0.007	2020 0.040 0.010 0.010 0.040 0.0313 0.048 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.000 0.037 0.000 0.037 0.000 0.037 0.000 0.037 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	0 027 0 011 0 000 2 468 2025 0 011 0 000 1 082 0 551 0 724 0 099 2 468 2025 0 011				
Table 12-12 Energy c Item Electricity Steam coal Diesel Gasoline Jetfuel Alcohol Total Table 12-13 Energy c Item Electricity Steam coal	GWa GWa Urit Urit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	0.000 0.624 ty pa sseng 2000 0.002 0.070 0.291 0.117 0.144 0.000 0.624 ty pa sseng 2000 0.002 0.070	0 071 0 775 er transpor 2005 0 003 0 071 0 385 0 136 0 210 0 200 0 775 er transpor 2005 0 003 0 071	0.005 0.069 1.046 tation (by 2010 0.005 0.059 0.476 0.181 0.310 0.006 1.046 tation inte 2010 0.005 0.069	0.007 0.061 1.433 fuel) 2015 0.007 0.061 0.645 0.240 0.465 0.015 1.433 ercity (by fu 2015 0.007 0.061	0010 0040 1.919 2020 0010 0.040 0.970 0.313 0.648 0.037 1.919 2020 0.010 0.040	0 027 0 0111 0 000 2 468 0 011 0 000 1 082 0 .551 0 .724 0 024 0 2 468 2025 0 011 0 011 0 000				
Table 12-12 Energy c Item Electricity Steam coal Diesel Gasoline Jetfuel Alcohol Total Total Table 12-13 Energy c Item Electricity Steam coal Motor fuels	GWa GWa Consumption of interci Unit GWa GWa GWa GWa GWa GWa Consumption of interci Unit GWa GWa GWa GWa	0.000 0.624 ty pa sseng 2000 0.002 0.070 0.291 0.117 0.144 0.000 0.624 ty pa sseng 2000 0.002 0.000 0.002	0 071 0 775 er transpor 2005 0 003 0 071 0 355 0 136 0 210 0 000 0 775 er transpor 2005 0 003 0 071 0 775	0.005 0.069 1.046 tation (by 2010 0.005 0.069 0.476 0.181 0.310 0.006 1.046 tation inte 2010 0.005 0.069 0.973	0.007 0.061 1.433 fuel) 2015 0.007 0.061 0.645 0.240 0.465 0.240 0.465 0.240 0.465 0.240 0.465 0.240 0.465 0.015 1.433 ercity (by fu 2015 0.007 0.061 1.365	2020 0.040 0.010 0.010 0.040 0.870 0.313 0.648 0.037 1.919 2020 0.010 0.040 1.869	0 027 0 0111 0 000 2 468 0 011 0 000 1 082 0 551 0 724 0 099 2 468 2025 0 011 0 000 2 458				
Table 12-12 Energy c Item Electricity Steam coal Diesel Gasoline Jetfuel Alcohol Total Table 12-13 Energy c Item Electricity Steam coal Motor fuels Total	GWa GWa Onsumption of interci Urit GWa GWa GWa GWa GWa GWa Oswa Consumption of interci Urit GWa GWa GWa GWa	0.000 0.624 ty pa sseng 2000 0.002 0.000 0.291 0.117 0.144 0.000 0.624 ty pa sseng 2000 0.002 0.002 0.070 0.551	0 071 0 .775 er transpor 2005 0 003 0 071 0 355 0 .136 0 210 0 000 0 .775 er transpor 2005 0 003 0 071 0 .701 0 .701	0.005 0.069 1.046 tation (by 2010 0.005 0.069 0.476 0.181 0.310 0.006 1.046 tation inte 2010 0.005 0.069 0.973 1.046	0.007 0.061 1.433 fuel) 2015 0.007 0.061 0.645 0.015 1.433 ercity (by fu 2015 0.007 0.061 1.365 1.443	0010 0040 1,919 2020 0010 0040 0,970 0,313 0,648 0,037 1,919 2020 0,010 0,040 1,869 1,919	0 027 0 011 0 000 2 468 2025 0 011 0 000 1 082 0 551 0 724 0 099 2 468 2025 0 011 0 000 2 458 2 025				
Table 12-12 Energy of Item Electricity Steam coal Diesel Gasoline Jet fuel Alcohol Total Total Table 12-13 Energy of Item Electricity Steam coal Motor fuels Total Table 12-15 Energy of Table 12-15 Energy of Tabl	GWa GWa Consumption of interci Unit GWa GWa GWa GWa GWa GWa Consumption of interci Unit GWa GWa GWa GWa GWa GWa	0.000 0.624 ty pa sseng 2000 0.002 0.070 0.291 0.117 0.144 0.000 0.624 ty pa sseng 2000 0.0551 0.654 0.654	0 071 0 775 er transpor 2005 0 003 0 071 0 365 0 136 0 210 0 000 0 775 er transpor 2005 0 003 0 071 0 705 er transpor 2005 0 007 0 075 er transpor 2005 0 007 0 007 0 775 er transpor 2005 0 007 0 075 er transpor 2005 0 007 0 075 0 007 0 077 0 007 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.005 0.069 1.046 tation (by 2010 0.005 0.069 0.476 0.181 0.310 0.006 1.046 tation inte 2010 0.005 0.069 0.973 1.046 emational	0.007 0.061 1.433 fuel) 2015 0.007 0.061 0.645 0.240 0.465 0.240 0.465 0.240 0.465 0.240 0.465 0.015 1.433 ercity (by fu 2015 0.007 0.061 1.365 1.433	2020 0.040 0.010 0.010 0.040 0.870 0.313 0.648 0.037 1.919 2020 0.010 0.040 0.037 1.919 2020 0.010 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.037 1.919	0 027 0 011 0 000 2 468 0 011 0 000 1 082 0 551 0 724 0 099 2 468 2025 0 011 0 000 2 468 2025 0 011 0 000 2 468 2025				
Table 12-12 Energy c Item Electricity Steam coal Diesel Gasoline Jetfuel Alcohol Total Table 12-13 Energy c Item Electricity Steam coal Motor fuels Total Table 12-15 Energy c Item	GWa GWa Consumption of interci Urit GWa GWa GWa GWa GWa GWa Consumption of interci GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	0.000 0.624 ty pa sseng 2000 0.002 0.000 0.291 0.117 0.144 0.000 0.624 ty pa sseng 2000 0.002 0.000 0.551 0.551 0.524 inter pass 2000	0 071 0 775 er transpor 2005 0 003 0 071 0 355 0 136 0 210 0 000 0 775 er transpor 2005 0 003 0 071 0 701 0 775 enger + into 2005	0.005 0.069 1.046 tation (by 2010 0.005 0.069 0.476 0.181 0.310 0.006 1.046 tation inte 2010 0.005 0.069 0.973 1.046 emational 2010	0.007 0.061 1.433 fuel) 2015 0.007 0.061 0.645 0.240 0.465 0.240 0.465 0.115 1.433 ercity (by fu 2015 0.007 0.061 1.365 1.433 8 military 1 2015	2020 0.010 0.010 0.010 0.040 0.0313 0.648 0.037 1.919 2020 0.010 0.040 1.869 1.819 1.819 1.819	0 027 0 011 0 000 2 468 0 001 0 000 1 082 0 551 0 724 0 099 2 468 2025 0 011 0 000 2 468 2025 0 011 0 000 2 468 2 468				
Table 12-12 Energy c Item Electricity Steam coal Dissel Gasoline Jatfuel Alcohol Total Table 12-13 Energy c Item Electricity Steam coal Motor fuels Total Table 12-15 Energy c Item Electricity	GWa GWa Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	0.000 0.624 ty pa sseng 2000 0.002 0.070 0.291 0.117 0.144 0.000 0.624 ty pa sseng 2000 0.002 0.070 0.551 0.624 inter pass 2000 0.007	0 071 0 775 er transpor 2005 0 003 0 071 0 385 0 136 0 210 0 200 0 775 er transpor 2005 0 003 0 071 0 775 er transpor 2005 0 000 0 775 0 000 0 775 0 000 0 775 0 000 0 775 0 000 0 071 0 775 0 000 0 075 0 000 0 077 0 000 0 007 0 000 0 077 0 000 0 077 0 000 0 007 0 000 0 077 0 000 0 000 0 007 0 000 0 007 0 000 0 0000 0 0000 0 0000 0 0000 0 00000 0 0000 0 0000 0 0000 0 00000	0.005 0.069 1.046 2010 0.005 0.069 0.476 0.181 0.310 0.006 1.046 tation inte 2010 0.005 0.069 0.973 1.046 emational 2010 0.012	0.001 0.061 1.433 fuel) 2015 0.007 0.061 0.645 0.240 0.465 0.015 1.433 ercity (by fu 2015 0.007 0.061 1.365 1.433 & military f 2015 0.021	2020 0.040 0.010 0.040 0.010 0.040 0.870 0.313 0.648 0.037 1.919 2020 0.010 0.040 1.869 1.919 1.919 2020 0.040 1.869 1.919	0 027 0 011 0 000 2 468 0 011 0 000 1 082 0 551 0 .724 0 099 2 468 2025 0 011 0 000 2 456 2 468 2 468 2 100 2 456 2 468 2 100 2 456 2 468 2 100 2 45 2 468 2 100 2 45 2 468 2 100 2 45 2 468 2 100 2 45 2 468 2 100 2 46				
Table 12-12 Energy c Item Electricity Steam coal Diesel Gasoline Jet fuel Alcohol Total Table 12-13 Energy c Item Electricity Steam coal Motor fuels Total Table 12-15 Energy c Item Electricity Steam coal	GWa GWa Consumption of interci GWa GWa GWa GWa GWa GWa Consumption of interci Unit GWa GWa GWa Consumption of intera + Unit GWa	0.000 0.624 ty pa sseng 2000 0.002 0.070 0.291 0.117 0.144 0.000 0.624 ty pa sseng 2000 0.002 0.070 0.551 0.624 inter pass 2000 0.007 0.070	0 071 0 775 er transpor 2005 0 003 0 071 0 385 0 136 0 210 0 200 0 775 er transpor 2005 0 003 0 071 0 775 er transpor 2005 0 000 0 071 0 775 er transpor 2005 0 000 0 071 0 775 0 000 0 071 0 775 0 000 0 000 0 071 0 775 0 000 0 071 0 775 0 000 0 071 0 775 0 000 0 000 0 071 0 775 0 000 0 0000 0 00000 0 0000 0 0000 0 0000 0 0000	0.005 0.069 1.046 tation (by 2010 0.005 0.069 0.476 0.181 0.310 0.006 1.046 tation inte 2010 0.005 0.069 0.973 1.046 emational 2010 0.012 0.069	0.007 0.061 1.433 fuel) 2015 0.007 0.061 0.645 0.240 0.465 0.240 0.465 0.240 0.465 0.045 0.015 1.433 ercity (by fu 2015 0.007 0.061 1.365 1.433 8 military 1 2015 0.021 0.021 0.021	2020 0.040 0.040 0.010 0.040 0.0313 0.040 0.0313 0.048 0.037 0.0313 0.048 0.037 0.0313 0.048 0.037 0.040 0.010 0.040 1.869 1.919 1.919 1.919	0 027 0 011 0 000 2 468 0 011 0 000 1 082 0 551 0 724 0 099 2 468 2025 0 011 0 000 2 456 2 468 2025 0 011 0 000 2 456 2 468 2 000 2 468 2 000 2 000 2 468 2 000 2 400 2 000 2 400 2 400 2 000 2 400 2 000 2 000 0 000 2 000 0 000000				
Table 12-12 Energy c Item Electricity Steam coal Diesel Gasoline Jet fuel Alcohol Total Table 12-13 Energy c Item Electricity Steam coal Motor fuels Total Table 12-15 Energy c Item Electricity Steam coal Motor fuels Total Table 12-15 Energy c	GWa GWa Consumption of interci Unit GWa GWa GWa GWa GWa GWa Consumption of interci Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	0.000 0.624 ty pa sseng 2000 0.002 0.070 0.291 0.117 0.144 0.000 0.624 ty pa sseng 2000 0.007 0.0551 0.624 inter pass 2000 0.007 0.007	0 071 0 775 er transpor 2005 0 003 0 071 0 365 0 136 0 210 0 200 0 775 er transpor 2005 0 003 0 071 0 775 0 000 0 775 0 000 0 775 0 000 0 077 0 000 0 775 0 000 0 077 0 000 0 077 0 000 0 071 0 775 0 000 0 077 0 000 0 007 0 000 0 077 0 000 0 007 0 007 0 000 0 007 0 000 0 071 0 0.775 er transpor 2005 0 0.03 0 007 0 0.775 0 0.000 0 0.000 0 0.775 0 0.000 0 0.0000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.000000 0 0.00000 0 0.000000000 0 0.0000000000	0.005 0.069 1.046 tation (by 2010 0.005 0.069 0.476 0.181 0.310 0.006 1.046 tation inte 2010 0.005 0.069 0.973 1.046 emational 2010 0.012 0.069	0.007 0.061 1.433 fuel) 2015 0.007 0.061 0.645 0.240 0.465 0.240 0.465 0.240 0.465 0.240 0.465 0.215 0.007 0.061 1.365 1.433 8 military 1 2015 0.021 0.021 0.021 0.021	0010 0040 1,919 2020 0010 0040 0,870 0,313 0,648 0,037 1,919 2020 0,010 0,040 2020 0,010 0,040 1,869 1,919 2020 0,040 1,869 1,919 2020 0,040 2,395	0 027 0 0111 0 000 2 468 0 011 0 000 1 082 0 551 0 724 0 099 2 468 2025 0 011 0 000 2 468 2025 0 011 0 000 2 468 2 468 2 468 2 000 2 468 2 468 2 468 2 000 2 468 2 468 2 000 2 468 2 468 2 000 2 000 2 100 2				

Figure 3.28. Snapshot of calculated data tables of worksheet "PassInter-D".

(a) Worksheet "US_HH_Ur-D" (Table 14)

First, the number of urban dwellings is taken from worksheet "Demogr-D" where it was calculated based on the input data related to the share of urban population and urban

household size. Then, the user is required to provide the following general input data which have impact on the energy demand for space heating in urban dwellings (Table 14-1):

- fraction (%) of urban dwellings situated in areas where space heating is required;
- degree-days (days⁰C) for urban dwellings (see Section 4, Table 4.1 for the definition of this variable).

Table 14-2 includes input data referring to space heating and air conditioning by type of dwelling, namely:

- fraction (%) of urban dwellings by type (relative to the total number of urban dwellings situated in areas where space heating is required);
- average size (sqm) of dwellings by type;
- specific heat loss rate (Wh/sqm/⁰C/h) by dwelling type;
- share (%) of urban dwellings with air conditioning, by type (relative to the total number of urban dwellings of the same type);
- specific cooling requirements (kWh/dw/yr) by dwelling type.

Table 14-3 contains the average specific energy consumptions and other factors required for calculation of useful energy demand for cooking, hot water and secondary appliances, namely:

- specific useful energy consumption for cooking per urban dwelling and per year (kWh/dw/yr);
- share (%) of urban dwellings with hot water facilities;
- specific useful energy consumption for water heating per person in urban dwellings (kWh/cap/yr);
- specific final electricity consumption per electrified urban dwelling and per year (kWh/dw/yr) for electric appliances (other end-uses than space heating, hot water, cooking and air conditioning);
- share (%) of electrified urban dwellings (electricity penetration for appliances);
- specific fossil fuel consumption per urban dwelling and per year (kWh/dw/yr, final energy) for non-electric appliances (other end-uses than space heating, hot water, cooking and air conditioning), mainly lighting, but also non-electric refrigerators etc.

The previous input data tables for the Demonstration case are shown in Figure 3.30.

Final	energy	demand in	Transportation sector
-------	--------	-----------	-----------------------

Table 13-1 Final energy demand in Transportation sector (by fue	energy demand in Transportation sector (b)	v fuel)
---	--	---------

tem	Unit	2000	2005	2010	2015	2020	2025
Bectricity	GWa	0.063	0.079	0.100	0.128	0.162	0.203
Steam coal	GWa	0.431	0.380	0.320	0.243	0.139	0.000
Diesel	GWa	3,964	4292	4.705	5.206	5.813	6.448
Gasoline	GWa	0.135	0.160	0.215	0.290	0.385	0.658
Jetfuel	GWa	0.144	0210	0.310	0.465	0.648	0.724
LPG	GWa	0.003	0.007	0.014	0.024	0.038	0.061
CNG	GWa	0.000	0.001	0.001	0.002	0.004	0.006
Alcohol	GWa	0.000	0.000	0.010	0.028	0.060	0.151
MF for Int'l & milit.	GWa	0.125	0.157	0.195	0.242	0.298	0.364
Total	GWa	4.864	5286	5.872	6.628	7.548	8.615

Table 13-2 Share of fuels in Transportation sector

tem	Unit	2000	2005	2010	2015	2020	2025
Bectricity	[%]	1.290	1.500	1.705	1.930	2.143	2.359
Steam coal	[%]	8,853	7.191	5.451	3.663	1.846	0.000
Diesel	[%]	81.507	81.195	80.136	78.545	77.021	74.846
Gasoline	[%]	2.769	3.028	3.663	4.380	5.098	7.636
Jet fuel	[%]	2,951	3.978	5.282	7.012	8.588	8.401
LPG	[%]	0.058	0.133	0.239	0.364	0.503	0.712
CNG	[%]	0.005	0.011	0.021	0.035	0.054	0.072
Alcohol	[%]	0.000	0.000	0.176	0.416	0.799	1.753
MF for Int'l & milit.	[%]	2.568	2,963	3.327	3.653	3.947	4.221

Table 13-3 Final energy demand in Transportation sector (by fuel group)

tem	Unit	2000	2005	2010	2015	2020	2025		
Bectricity	GWa	0.063	0.079	0.100	0.128	0.162	0.203		
Steam coal	GWa	0.431	0.380	0.320	0.243	0.139	0.000		
Motor fuel	GWa	4.370	4.827	5.452	6.257	7.246	8.412		
Total	GWa	4,864	5.286	5.872	6.628	7.548	8.615		

Table 13-4 Share of fuel groups in Transportation sector

		<u> </u>					
tem	Unit	2000	2005	2010	2015	2020	2025
Bectricity	[%]	1.290	1.500	1.705	1.930	2.143	2.359
Steam coal	[%]	8,853	7.191	5.451	3.663	1.846	0.000
Motor fuel	[%]	89,857	91,309	92.845	94.407	96.010	97.641

Table 13.5 Einal energy demand in Transportation costs	r (by cube actor)
Table 13-3 Fillal energy demand in Fransportation secto	I UNV SUDSECTOR

tem	Unit	2000	2005	2010	2015	2020	2025
Freight	GWa	4.061	4281	4.516	4.780	5.080	5.395
Pass_intracity	GWa	0.054	0.074	0.114	0.173	0.250	0.389
Pass_intercity	GWa	0.624	0.775	1.046	1.433	1.919	2.468
ht'l & military	GWa	0.125	0.157	0.195	0.242	0.298	0.364
Total	GWa	4,864	5.286	5.872	6.628	7.548	8.615
Total	GWa	4,864	5.286	5.872	6.628	7.548	8.61

Table 13-6 Shares of final energy demand of Transportation subsectors

tem	Unit	2000	2005	2010	2015	2020	2025
Freight	[%]	83,500	80,979	76.912	72.118	67.313	62.620
Pass_intracity	同	1.108	1.393	1.940	2.611	3.318	4.514
Pass_intercity	門句	12.824	14,665	17.821	21.618	25.422	28.645
ht'l & military	[%]	2.568	2,963	3.327	3.653	3.947	4.221

Figure 3.29. Snapshot of worksheet "FIN_Trp-D".

Useful energy demand in Ur	ban Househo	ld secto	r				
Table 14-1 Basic data for useful ei	nergy demand	in Urban F	ouseholo	1 sector	2045	2020	2025
tem Duallings	Unit	2000	2005	2010	2015	2020	2023
Chara of dw. moviding, CH	[ITITION]	100.000	100,000	100.000	100.000	100.000	100.000
Degree device	[70] [down801	1500.000	1500.000	1500.000	1500.000	1500.000	1500.000
begree-days	juays oj	1000,000	1000.000	1300,000	1000 000	1000.000	1000 000
Tables 14-2 D welling factors for s tem Share of Apartment Share of Family house Share of Dw. with room SH only Share of Dw. without SH	pace heating a Unit [%] [%] [%]	nd air cor 2000 30,000 13,000 45,000 8,000	2005 30.000 14.000 43.000 8.000	, Urban H 2010 30,000 16,000 40,000 8,000	ousehold 2015 30,000 18,000 37,000 8,000	2020 30.000 19.000 34.000 8.000	2025 30.000 20.000 33.000 8.000
Share of Villa	[%]	4,000	5,000	6.000	7,000	9.000	9,000
Dw. size. Anartment	[sam]	80.000	80.000	80.000	80,000	80.000	80.000
Dw. size. Family house	[sam]	120.000	120.000	120.000	120.000	120.000	120.000
Dw. size, Dw. with room SH only	[sam]	60,000	60,000	60 000	60 000	60.000	60.000
Dw. size, Dw. without SH	[sam]	50,000	50.000	50,000	50,000	50,000	50,000
Dw. size. Villa	[sam]	200,000	200.000	200 000	200.000	200.000	200.000
Area h. Acartment	 [56]	100.000	100.000	100.000	100.000	100.000	100.000
Area h. Famil v house	昭	80,000	80.000	80,000	80,000	80.000	80,000
Area h. Dw. with room SH only	[%]	40,000	40.000	40 000	40,000	40.000	40,000
Area h. Dw. without SH	[%]	000.0	0.000	0.000	0.000	0.000	0.000
Area h. Villa	[%]	80 000	80.000	80 000	80 000	80.000	80 000
H. Ios. R. Apartment	[Wh/sqm/*C/h]	4000	4.000	4000	4000	4.000	4000
H. Ios. R. Family house	[Wh/sgm/*C/h]	4,500	4.500	4,500	4,500	4.500	4.500
H. Ios. R. Dw. with room SH only	[Wh/sgm/*C/h]	3.500	3,500	3,500	3.500	3,500	3,500
H. Ios. R. Dw. without SH	[Wh/sqm/*C/h]	3.500	3.500	3,500	3,500	3,500	3,500
H. Ios. R. Villa	[Wh/sqm/*C/h]	4,500	4.500	4,500	4,500	4.500	4,500
Dw. AC. Apartment	[%]	5000	7.000	9.000 9	11.000	13.000	15,000
Dw. AC. Family house	[%]	7.000	8.000	9.000	11.000	13.000	15,000
Dw. AC. Dw. with room SHonly	[%]	5.000	5.500	6000	6.500	7.000	8.000
Dw. AC. Dw. without SH	[%6]	0.000	0.000	0.000	0.000	0.000	0.000
Dw. AC. Villa	[%]	100,000	100.000	100,000	100,000	100.000	100,000
Spc. reg. AU. Apartment	KWIVOW/VI	2500,000	2500.000	2500,000	2500,000	2500.000	2500,000
Spc. req. AU. Family house	[KVVIVOW/yr]	3000 000	3000.000	3500,000	3000 000	3500.000	3000 000
Spo. req. AC, Dw. with room SHonly	[KWWWOW/yr] [kWb/dw/yr]	2000 000	2000.000	2000 000	2000 000	2000.000	2000 000
Spelling AC. Dw. without Sh	Ringer (Construction)	8000.000	8000.000	6000.000	8000 000	8000 000	8000 000
Table 14-3 D welling factors for co	oking, hot wate	and app	liances, L	Jrban Hou	isehold	0000.0001	00001000
tem	Unit	2000	2005	2010	2015	2020	2025
Cooking	[kWh/dw/yr]	930,000	915.000	900.000	850,000	800.000	750,000
Dw with hot water	[%]	40,000	45.000	50 DOO	55 DOD	60.000	70 000
HW per cap	[kWh/cap/yr]	350,000	400.000	450,000	500,000	600.000	700 000
Electr. cons. for appliances	[kWh/dw/yr]	900.000	1100.000	1300.000	1500 000	1750.000	2000 000
Electr.penetration	間	85,000	90.000	95,000	98 000	100.000	100 000
FF for lighting	[kWh/dw/\r]	100,000	100.000	100 000	100 000	100.000	100 000

Figure 3.30. Snapshot of Tables 14-1 to 14-3 of worksheet "US HH Ur-D".

Based on the previous information, the useful energy demand for all end-use categories: space heating, water heating, cooking, air conditioning, and secondary appliances (electric and non-electric) is calculated (Table 14-4) as illustrated in Figure 3.31.

Table 14-4 Calculation of useful er	Table 14-4 Calculation of useful energy demand in Urban Household sector											
Item	Unit	2000	2005	2010	2015	2020	2025					
Space heating	GWa	1.191	1.449	1.821	2,302	2.971	3,637					
Water heating	GWa	0.127	0.187	0.268	0.372	0.547	0.810					
Cooking	GWa	0.141	0.161	0.188	0.213	0.243	0.276					
Air conditioning	GWa	0.054	0.077	0.110	0.155	0.235	0.298					
Elect for appliances	GWa	0.116	0.174	0.258	0.368	0.532	0.735					
FFforlighting	GWa	0.002	0.002	0.001	0.001	0.000	0.000					
Total	GWa	1.630	2.050	2.646	3,411	4.528	5.756					

Figure 3.31. Snapshot of Table 14-3 of worksheet "US HH Ur-D".

Table 14-5 Penetration of energy	forms into spa	e heating	, Urban H	ousehold			
Item	Unit	2000	2005	2010	2015	2020	2025
Traditional fuels	[%]	5,000	4,500	4,000	3,000	2,000	1,000
Modern biomass	181	2.000	2,500	3,000	3,500	4000	5000
Electricity	[8]	5.000	6000	7 000	8.000	9.000	10,000
(thereof:heat.pump)	[%]	1.000	2,000	3.000	4.000	5.000	6.000
District heat	[%]	0.000	0.000	0.000	3.000	5.000	8000
Soft solar	[3]	0.000	0.000	0.000	1.000	2,000	4000
Fossil fuels	[%]	88.0	87.0	86.0	81.5	78.0	72.0
Table 14.6 Efficiencies and other (factore for enar	e heating	lirban H	oueabold			
tanic 1+0 Enterencies and outer 1	lib#	2000	2005	2040	2045	2020	2025
Eff. Tead fude	1911	16.000	18,000	17,000	10 000	10.000	2020
Eff. Mod biomass	19(1	25.000	26,000	27 000	20 000	20,000	20,000
Eff. Executionals	19	80.000	81,000	82,000	82,000	84,000	86,000
COR best surgers	% [entic]	2 500	2 760	2 000	2 500	4 000	4.500
Solar share	<u> 1400 </u> %1	40.000	40.000	40,000	40.000	40.000	40.000
	10	-0.000	40 2000	10000	-0.000	10000	40 000
Table 14-7 Penetration of energy f	orms into wate	r heating,	Urban Ho	usehold			
Item	Unit	2000	2005	2010	2015	2020	2025
Traditional fuels	[3]	5.000	4,500	4000	3.000	2,000	1.000
Modern biomass	[%]	2.000	2,500	3000	3,500	4000	5,000
Electricity	[%]	5.000	6000	7 000	8.000	9000	10,000
(thereof:heat.pump)	[%]	1.000	2,000	3 000	4.000	5.000	6.000
District heat	[%]	0.000	0.000	0.000	3.000	5,000	8000
Soft solar	[2]	0.000	0.000	0.000	1.000	2,000	4000
Fossil fuels	[2]	0.88 D	87 D	86.0	81.5	78.0	72.0
Table 14-8 Efficiencies and other	factors for wat	er heating	. Urban H	ousehold			
tem	Unit	2000	2005	2010	2015	2020	2025
Eff. Trad.fuels	1%1	15,000	16,000	17,000	18,000	19,000	20,000
Eff. Mod biomass	1%1	25.000	26,000	27.000	28,000	29,000	30,000
Eff. Fossil fuels	1%1	60.000	61,000	62,000	63,000	64,000	65,000
COP heat pumps	fratiol	2,500	2,750	3,000	3,500	4,000	4500
Solar share	1%1	40,000	40,000	40,000	40.000	40,000	40,000
Table 14-9 Penetration of energy1	forms into cool	king, Urba	n Househ	old			
Item	Unit	2000	2005	2010	2015	2020	2025
Traditional fuels	[%]	10.000	9.000	8000	7.000	5,000	3000
Modern biomass	[%]	5.000	6.000	7.000	8.000	9.000 9	10,000
Electricity	[%]	5.000	6000	7.000	8.000	9.000 8	10,000
Soft solar	[%]	0.000	0.000	0.000	1.000	2,000	3.000
Fossil fuels	[%]	80.0	79.0	78.0	76.0	75.0	740
Table 14.10. Efficiencies and othe	r faator o for oo	okina Url	an House	abald			
Table 14-10 Linclencies and oure		2000	2005	2040	2045	2020	2025
reni Eff. Tas el fuelle		10.000	2003	2010	2013	2020	2023
ETT. IFBO.TUES	16	12.000	12,500	13 000	13.500	14000	14000
Eff. Mod. Diomass	16 1971	20.000	21000	22,000	23.000	24000	20 000
EIT. PUSSII TUBIS Solar share	16	40,000		40,000	40,000	04.000	40.000
Vorar Share	(Å	40.000	40 000	40 000	40.000	40,000	40 000
Table 14-11 Penetration into air c	onditionina by	technolog	v. Urban	Househol	d		
tem	Unit	2000	2005	2010	2015	2020	2025
Electricity	[%]	95.000	93,000	90.000	87.000	84,000	80.000
Non-electric	1%1	5.00	7.00	10.00	13.00	16.00	20.00
THE PROPERTY	10	0.00	1.00	10.00	10.00	1000	2020
Table 14-12 Efficiencies for air co	nditionina. Urb	an House	hold				
item	Unit	2000	2005	2010	2015	2020	2025
COP electric &C	[catio]	2.500	2 600	2 700	2 800	2 000	2,000
COP pop-electric AC	[ratio]	2,500	2,000	2.700	2,800	2,300	3,000
The Constant of The	[runv]	2.000	2,000	2.100	2.000	2,500	0.000

Figure 3.32. Snapshot of input data tables of worksheet "US_HH_Ur-D".

The other tables of the worksheet are meant to allow entering of the following input data (Figure 3.32):

- penetration of different energy carriers (traditional fuels, modern biomass, electricity, heat pumps, district heating, soft solar and fossil fuels) into the markets of space heating (Table 14-5), water heating (Table 14-7), cooking (Table 14-9) and air conditioning (Table 14-11) of the Urban Household subsector;
- data such as efficiencies / coefficients of performance (COP) of different energy carriers when used in the Urban Household subsector for the previously-mentioned applications: space heating (Table 14-6), water heating (Table 14-8), cooking (Table 14-10) and air conditioning (Table 14-12). For the detailed definitions of these variables the user should refer to Section 4, Tables 4.1 and 4.2.

The previous input data and the model-calculated data on useful energy demand stored in this worksheet are used in worksheet "FIN_HH-D" to work out the final energy demand of the Household sector.

(b) Worksheet "US_HH_Rr-D" (Table 15)

This worksheet has the same functions and structure as the previous one (US_HH_Ur-D) but it deals with rural dwellings.

(c) Worksheet "FIN_HH-D" (Table 16)

The worksheet "FIN_HH-D" converts the previously calculated useful energy demand to final energy demand by type of end-use (space heating, water heating, cooking, air conditioning and appliances) and by type of energy carrier (traditional fuels, modern biomass, electricity, district heating, soft solar and fossil fuels), for urban dwellings (Tables 16-1 to 16-6), rural dwellings (Tables 16-7 to 16-12), and sums up the results for the two subsectors as final energy demand of the entire Household sector (Tables 16-13 to 16-18). Figure 3.33 illustrates the final energy results for urban Household sub sector.

Final energy demand in Household sector Urban

Table 16-1 Urban Household, space heating	
---	--

Table 16-1 Urban Household, space heating											
ltem	Unit	2000	2005	2010	2015	2020	2025				
Traditional fuels	GWa	0.397	0.408	0.428	0.384	0.313	0.182				
Modern biomass	GWa	0.095	0.139	0.202	0.288	0.410	0.606				
Electricity	GWa	0.059	0.086	0.125	0.179	0.257	0.347				
District heat	GWa	0.000	0.000	0.000	0.069	0.149	0.291				
Soft solar	GWa	0.000	0.000	0.000	0.009	0.024	0.058				
Fossil fuels	GWa	1.746	2.067	2.525	3.000	3.676	4,163				
Total	GWa	2.298	2,699	3.281	3,928	4,829	5.647				
Table 16-2 Urban H	ouseho	old, water	heating								
ltem	Unit	2000	2005	2010	2015	2020	2025				
Traditional fuels	GWa	0.042	0.053	0.063	0.062	0.058	0.041				
Modern biomass	GWa	0.010	0.018	0.030	0.047	0.075	0.135				
Electricity	GWa	0.006	0.011	0.018	0.029	0.047	0.077				
District heat	GWa	0.000	0.000	0.000	0.011	0.027	0.065				
Soft solar	GWa	0.000	0.000	0.000	0.001	0.004	0.013				
Fossil fuels	GWa	0.186	0.267	0.372	0.485	0.677	0.928				
Total	GWa	0.245	0.348	0,483	0.635	0.889	1.258				
Table 16-3 Urban Household, cooking											
ltem	Unit	2000	2005	2010	2015	2020	2025				
Traditional fuels	GWa	0.117	0.116	0.116	0.110	0.087	0.059				
Modern biomass	GWa	0.035	0.046	0.060	0.074	0.091	0.110				
Electricity	GWa	0.703	0.967	1.317	1.704	2,189	2.756				
Soft solar	GWa	0.000	0.000	0.000	0.001	0.002	0.003				
Fossil fuels	GWa	0.225	0.250	0.282	0.308	0.343	0.380				
Total	GWa	1.080	1.378	1.775	2,197	2.712	3,309				
Table 16-4 Urban Ho	ouseho	ld, air con	nditioning								
ltem	Unit	2000	2005	2010	2015	2020	2025				
Electricity	GWa	0.020	0.028	0.037	0.048	0.068	0.079				
Non-electric	GWa	0.001	0.002	0.004	0.007	0.013	0.020				
Total	GWa	0.021	0.030	0.041	0.055	0.081	0.099				
Table 16-5 Urban Ho	ouseho	ld, applia	nces								
ltem	Unit	2000	2005	2010	2015	2020	2025				
Elect for appliances	GWa	0.116	0.174	0.258	0.368	0.532	0.735				
FF for lighting	GWa	0.002	0.002	0.001	0.001	0.000	0.000				
Total	GWa	0.118	0.176	0.259	0.369	0.532	0.735				
Table 16-6 Total fina	nl energ	y deman	d in Urbar	n Househo	old						
ltem	Unit	2000	2005	2010	2015	2020	2025				
Traditional fuels	GWa	0.558	0.576	0.607	0.558	0.457	0.281				
Modern biomass	GWa	0.141	0.203	0.292	0.408	0.576	0.852				
Electricity	GWa	0.905	1.265	1,755	2.328	3.094	3.995				
District heat	GWa	0.000	0.000	0.000	0.080	0.176	0.356				
Soft solar	GWa	0.000	0.000	0.000	0.012	0.030	0.074				
Fossil fuels	GWa	2.161	2.587	3,185	3,800	4.710	5.491				
Total	GWa	3,763	4,632	5,839	7.184	9.043	11.049				

Figure 3.33. Snapshot of Tables 16-1 to 16-6 of worksheet "FIN HH-D".

Worksheets for service sector (Tables 17 to 19) 3.3.9

The energy demand analysis of the Service sector is covered by three worksheets: "US SS-D", meant for entering those input data which allow the model to calculate the useful energy demand for space heating, air conditioning, motor fuels, electricity specific uses and other thermal uses (excluding space heating); "SS_Fac-D", serving for entering the penetration of different energy carriers into the various useful energy markets of the sector (space heating, other thermal uses and air conditioning); and "FIN_SS-D", which converts the previously calculated useful energy demand to final energy demand by type of end-use (thermal uses, air conditioning and electricity specific uses) and by type of energy carrier (traditional fuels, modern biomass, electricity, district heating, soft solar, fossil fuels and motor fuels). As already mentioned in Section 2, the categories of energy use considered in the Service sector are: space heating, air conditioning, motor fuels, electricity specific uses and other thermal uses (water heating and cooking). The energy demand for space heating and air conditioning is calculated based on specific space heating and cooling requirements (kWh/sqm/yr) while the energy demand for motor fuels, electricity specific uses and other thermal uses (water heating and cooking) is calculated through value added and energy intensity at Service sub sector level.

(a) Worksheet "US_SS-D" (Table 17)

The input data required to be entered into this worksheet are the following (see Figure 3.34):

- share (%) of Service sector in the total labour force and average floor area per employee (sqm/cap) in Table 17-1;
- share (%) of floor area requiring space heating and what of that (%) is actually heated, specific space heat requirements (kWh/sqm/yr), share (%) of air-conditioned floor area and specific cooling requirements (kWh/sqm/yr) in Table 17-2;
- energy intensities for motor fuels (Table 17-4), specific uses of electricity (Table 17-5) and other thermal uses, except space heating (Table 17-6).

The model-calculated data are:

- labour force (million employees) and floor area (million sqm) in Service sector (Table 17-1);
- useful energy demand for space heating and air conditioning (Table 17-3), motor fuels (Table 17-7), specific uses of electricity (Table 17-8), and other thermal uses (Table 17-9);
- total useful energy demand for the entire Service sector (Table 17-10).

Figure 3.35 shows the model-calculated data included in Tables 17-3 and Tables 17-7 to 17-10.

Useful energy de	emand in Ser	vice secto	or				
Table 17-1 Basic data	a for useful ene	rgy deman	d in Servic	e sector			
ltem	Unit	2000	2005	2010	2015	2020	2025
Labour force in SS	[%]	45.000	46.000	47.000	48.000	49.000	50.00
Floor area per emp.	[sqm/cap]	8.000	8.400	8.800	9.200	9.600	10.00
Labourforce in SS	[mill cap]	1,689	2.059	2.536	3,139	3.888	4.80
Floor area of SS	[mill sqm]	13.512	17,300	22.320	28.878	37.320	48.00
Table 17-2 Easters fo	r enece heating	a op dioir ea	nditioning				
table 17-2 Factors to	n space nearing		2005	2040	2045	2020	2025
	01iit	2000	2000	2010	2010	2020	2020
Share of area req. SH	170	100,000	100,000	100.000	100.000	100.000	100,00
Area actually neated	W	80000	<u> </u>	<u>60.000</u>	54,000	<u></u> 52,000	<u>/0.00</u> 50.00
Specific on req.	[KOOTES QITE VI]	40.000	45.000	20.000	34.000	32.000	40.00
Air conditioor area	[70] R-302 b /a and s2	10,000	15,000	20.000	25.000	50.000	40.00
specific cooling req.	i [kuu ivs qrivyr]	30,000	30,000	30.000[00.000	50.000	30.00
Energy intensities	for end-use	s other th	an space	heating	and air co	onditioni	na
Table 17.4 Energy inf	tensities of Mot	or fuels					0
tem	Unit	2000	2005	2010	2015	2020	2025
Service	R/W/J/US\$1	0.169	0.175	0.180	0.184	0.187	0.18
Commer & tour.	R/0/1/US\$1	0.400	0.400	0.400	0.400	0.400	0.40
Public admins.	RW/JUS\$1	0.200	0.200	0.200	0.200	0.200	0.20
Finance&buss.	R/0/1/US\$1	0.050	0.050	0.050	0.050	0.050	0.05
Persn. serv. & others	[kW/VUS\$]	0.100	0.100	0.100	0.100	0.100	0.10
					I		
Table 17-5 Energy int	tensities of Elec	ctricity spe	cific uses				
tem	Unit	2000	2005	2010	2015	2020	2025
Service	[kWh/US\$]	1.086	1.086	1.085	1.085	1.085	1.08
Commer <i>&</i> tour.	[kWI/US\$]	1.070	1.070	1.070	1.070	1.070	1.07
Public admins.	[kW/VUS\$]	1.050	1.050	1.050	1.050	1.050	1.05
Finance&buss.	[kW/\/US\$]	1.200	1.200	1.200	1.200	1.200	1.20
Persn. serv. & others	[kWh/US\$]	1.100	1.100	1.100	1.100	1.100	1.10
Table 17-6 Energy int	tensities of Oth	er thermal (uses				
tem	Unit	2000	2005	2010	2015	2020	2025
Service	BORD/US\$1	0,123	0,127	0,130	0,132	0,134	0,13
Commer & tour	BOR/MUSS1	0.300	0.300	0.300	0.300	0.300	0.30
Public admins	BO0/5/US\$1	0.100	0.000	0.000	0.000	0.300	0.30
Fin ance&buss	BOM/5/US\$1	0.050	0.050	0.050	0.050	0.050	0.05
Port con & other	R/0/1/US\$1	0.000	0.000	0.000	0.000	0.400	0.00
F EISTI, SEIU, OF DITIETS				10.0000		[2] U. U. M. M. M.	

Figure 3.34.	Snapshot	of input	data tables	of worksheet	"US SS-D".
	2	<i>c, mpm</i>		0,	00002.

(b) Worksheet "SS_Fac-D" (Table 18)

In this worksheet the user should enter the following input data:

- penetrations of different energy carriers (traditional fuels, modern biomass, electricity, heat pumps, district heat, soft solar and fossil fuels) into the space heating market (Table 18-1);
- penetrations of different energy carriers into the market of other thermal uses: hot water and cooking (Table 18-2);
- efficiencies of various fuels, coefficient of performance of heat pumps and other factors related to all thermal uses (space heating, hot water and cooking) in Service sector (Table 18-3);
- penetration of electric and non-electric equipment in the market of air conditioning (Table 18-4);
- coefficients of performance of electric and non-electric air conditioning equipment (Table 18-5).

A snapshot of this worksheet is shown in Figure 3.36.

Table 17-3 Useful energy demand for space heating and air conditioning									
Item	Unit	2000	2005	2010	2015	2020	2025		
Total area heated	[mill sqm]	6.756	9,515	13.392	18,771	26.124	36.001		
Space heating	GWa	0.046	0.063	0.086	0.116	0.155	0.205		
Airconditioning	GWa	0.008	0.015	0.025	0.041	0.064	0.110		

Useful energy demand for end-uses other than space heating and air conditioning Table 17-7 Useful energy demand of Motor fuels

Item	Unit	2000	2005	2010	2015	2020	2025
Service	GWa	0.316	0.419	0.555	0.738	0.975	1.277
Commer.&tour.	GWa	0.098	0.144	0.204	0.289	0.395	0.527
Public admins.	GWa	0.122	0.158	0.207	0.273	0.359	0.473
Finance&buss.	GWa	0.006	0.008	0.011	0.015	0.021	0.030
Persn. serv. & others	GWa	0.091	0.109	0.133	0.162	0.200	0.247

Table 17-8 Useful energy demand of Electricity specific uses

ltem	Unit	2000	2005	2010	2015	2020	2025
Service	GWa	2.038	2.600	3,353	4.349	5.644	7.333
Commer.&tour.	GWa	0.261	0.384	0.545	0.772	1.057	1.409
Public admins.	GWa	0.640	0.830	1.087	1.431	1.884	2.482
Finance&buss.	GWa	0.135	0.187	0.260	0.361	0.506	0.729
Persn. serv. & others	GWa	1.001	1.199	1.461	1.786	2.197	2.712

Table 17-9 Useful energy demand of Other thermal uses

ltem	Unit	2000	2005	2010	2015	2020	2025
Service	GWa	0.231	0.304	0,400	0.530	0.697	0.908
Commer.&tour.	GWa	0.073	0.108	0.153	0.216	0.296	0.395
Public admins.	GWa	0.061	0.079	0.104	0.136	0.179	0.236
Finance&buss.	GWa	0.006	0.008	0.011	0.015	0.021	0.030
Persn. serv. & others	GWa	0.091	0.109	0.133	0.162	0.200	0.247

Table 17-10 Total useful energy demand in Service sector

ltem	Unit	2000	2005	2010	2015	2020	2025
Space heating	GWa	0.046	0.063	0.086	0.116	0.155	0.205
Air conditioning	GWa	0.008	0.015	0.025	0.041	0.064	0.110
Motorfuels	GWa	0.316	0.419	0.555	0.738	0.975	1.277
Electricity spec. uses	GWa	2.038	2.600	3,353	4.349	5.644	7.333
Other thermal uses	GWa	0.231	0.304	0.400	0.530	0.697	0.908
Total	GWa	2.639	3.400	4,419	5.775	7.535	9.833

Figure 3.35. Snapshot of calculated data tables of worksheet "US SS-D".

Penetration of energy carriers into useful energy demand, and efficiencies in Service sector

lt ann	Hait	2000	2005	2040	2045	20.20	2025			
	Unit	2000	2005	2010	2015	2020	2025			
Traditional fuels	[%]	25.000	23.000	21.000	19.000	17.000	15.000			
Modern biomass	[%]	2.000	3.000	4.000	6.000	8.000	10.000			
Electricity	[%]	8.000	10.000	12.000	14.000	16.000	18.000			
(thereof: heat pump)	[%]	10.000	12.000	14.000	16.000	18.000	20.000			
District heat	[%]	0.000	0.000	5.000	7.000	10.000	12.000			
Soft solar	[%]	0.000	1.000	3.000	5.000	7.000	9.000			
Fossil fuels	[%]	65.00	63.00	55.00	49.00	42.00	36.00			
Table 18-2 Penetration of energy forms into Other thermal uses										
item	Unit	2000	2005	2010	2015	2020	2025			
Traditional fuels	[%]	25.000	23.000	21.000	19.000	17.000	15.000			
Modern biomass	[%]	2.000	3.000	4.000	6.000	8.000	10.000			
Electricity	[%]	8.000	10.000	12.000	14.000	16.000	18.000			
District heat	[%]	0.000	0.000	5.000	7.000	10.000	12.000			
Soft solar	[%]	0.000	1.000	3.000	5.000	7.000	9.000			
Fossil fuels	[%]	65.00	63.00	55.00	49.00	42.00	36.00			
Table 18-3 Efficiencies and other factors for Thermal uses										
Table 18-3 Efficiencies a	nd other	factors	for Ther	nal uses						
Table 18-3 Efficiencies a Item	ndother Unit	factors 2000	for Ther 2005	nal uses 2010	2015	2020	2025			
Table 18-3 Efficiencies a Item Eff. Trad. fuels	ndother Unit [%]	factors 2000 15.000	for Theri 2005 16.000	nal uses 2010 17.000	2015 18.000	2020 19.000	2025 20.000			
Table 18-3 Efficiencies a Item Eff. Trad. fuels Eff. Mod. biomass	nd other Unit [%] [%]	factors 2000 15.000 25.000	for Theri 2005 16.000 26.000	nal uses 2010 17.000 27.000	2015 18.000 28.000	2020 19.000 29.000	2025 20.000 30.000			
Table 18-3 Efficiencies a Item Eff. Trad. fuels Eff. Mod. biomass Eff. Fossil fuels	nd other Unit [%] [%] [%]	factors 2000 15.000 25.000 60.000	for Theri 2005 16.000 26.000 61.000	nal uses 2010 17.000 27.000 62.000	2015 18.000 28.000 63.000	2020 19.000 29.000 64.000	2025 20.000 30.000 65.000			
Table 18-3 Efficiencies a Item Eff. Trad. fuels Eff. Mod. biomass Eff. Fossil fuels COP heat pumps	Ind other Unit [%] [%] [%] [ratio]	factors 2000 15.000 25.000 60.000 2.500	for Therr 2005 16.000 26.000 61.000 2.750	mal uses 2010 17.000 27.000 62.000 3.000	2015 18.000 28.000 63.000 3.500	2020 19.000 29.000 64.000 4.000	2025 20.000 30.000 65.000 4.500			
Table 18-3 Efficiencies a Item Eff. Trad. fuels Eff. Mod. biomass Eff. Fossil fuels COP heat pumps Low rise buildings	nd other Unit [%] [%] [%] [ratio] [%]	factors 2000 15.000 25.000 60.000 2.500 70.000	for Therr 2005 16.000 26.000 61.000 2.750 65.000	mal uses 2010 17.000 27.000 62.000 3.000 60.000	2015 18.000 28.000 63.000 3.500 55.000	2020 19.000 29.000 64.000 4.000 50.000	2025 20.000 30.000 65.000 4.500 50.000			
Table 18-3 Efficiencies a Item Eff. Trad. fuels Eff. Mod. biomass Eff. Fossil fuels COP heat pumps Low rise buildings Solar share	nd other Unit (%) (%) (%) (%) (%)	factors 2000 15.000 25.000 60.000 2.500 70.000 40.000	for Therr 2005 16.000 26.000 61.000 2.750 65.000 40.000	mal uses 2010 17.000 27.000 62.000 3.000 60.000 40.000	2015 18.000 28.000 63.000 3.500 55.000 40.000	2020 19.000 29.000 64.000 4.000 50.000 40.000	2025 20.000 30.000 65.000 4.500 50.000 40.000			
Table 18-3 Efficiencies a Item Eff. Trad. fuels Eff. Mod. biomass Eff. Fossil fuels COP heat pumps Low rise buildings Solar share Table 18-4 Penetration of	nd other Unit (%) (%) (%) (%) (%) f energy	factors 2000 15.000 25.000 60.000 2.500 70.000 40.000 forms int	for Therr 2005 16.000 26.000 61.000 2.750 65.000 40.000 to Air co	mal uses 2010 17.000 27.000 62.000 3.000 60.000 40.000	2015 18.000 28.000 63.000 3.500 55.000 40.000	2020 19.000 29.000 64.000 4.000 50.000 40.000	2025 20.000 30.000 65.000 4.500 50.000 40.000			
Table 18-3 Efficiencies a Item Eff. Trad. fuels Eff. Mod. biomass Eff. Fossil fuels COP heat pumps Low rise buildings Solar share Table 18-4 Penetration of Item	nd other Unit (%) (%) (%) (%) (%) f energy Unit	factors 2000 15.000 25.000 60.000 2.500 70.000 40.000 forms int 2000	for Therr 2005 16.000 26.000 61.000 2.750 65.000 40.000 to Air co 2005	mal uses 2010 17.000 27.000 62.000 3.000 60.000 40.000 n ditionin 2010	2015 18.000 28.000 63.000 3.500 55.000 40.000 9 2015	2020 19.000 29.000 64.000 4.000 50.000 40.000 2020	2025 20.000 30.000 65.000 4.500 50.000 40.000			
Table 18-3 Efficiencies a Item Eff. Trad. fuels Eff. Mod. biomass Eff. Fossil fuels COP heat pumps Low rise buildings Solar share Table 18-4 Penetration of Item Electricity	nd other Unit (%) (%) (%) (%) (%) f energy Unit (%)	factors 7 2000 15.000 25.000 60.000 2.500 70.000 40.000 forms int 2000 90.000	for Therr 2005 16.000 26.000 61.000 2.750 65.000 40.000 to Air co 2005 86.000	mal uses 2010 17.000 27.000 62.000 3.000 60.000 40.000 n ditionin 2010 82.000	2015 18.000 28.000 63.000 3.500 55.000 40.000 9 2015 78.000	2020 19.000 29.000 64.000 4.000 50.000 40.000 2020 74.000	2025 20.000 30.000 65.000 4.500 50.000 40.000 2025 70.000			
Table 18-3 Efficiencies a Item Eff. Trad. fuels Eff. Mod. biomass Eff. Fossil fuels COP heat pumps Low rise buildings Solar share Table 18-4 Penetration of Item Electricity Non-electric	nd other Unit (%) (%) (%) (%) (%) f energy Unit (%) (%)	factors 7 2000 15.000 25.000 60.000 2.500 70.000 40.000 forms int 2000 90.000 10.00	for Therr 2005 16.000 26.000 61.000 2.750 65.000 40.000 to Air co 2005 86.000 14.00	mal uses 2010 17.000 62.000 3.000 60.000 40.000 nditionin 2010 82.000 18.00	2015 18.000 28.000 63.000 3.500 55.000 40.000 9 2015 78.000 22.00	2020 19.000 29.000 64.000 50.000 40.000 40.000 2020 74.000 26.00	2025 20.000 30.000 65.000 4.500 50.000 40.000 40.000 2025 70.000 30.00			
Table 18-3 Efficiencies aItemEff. Trad. fuelsEff. Mod. biomassEff. Fossil fuelsCOP heat pumpsLow rise buildingsSolar shareTable 18-4 Penetration ofItemElectricityNon-electricTable 18-5 Efficiencies for	nd other Unit (%) (%) (%) (%) (%) fenergy Unit (%) (%) (%)	factors 2000 15.000 25.000 60.000 2.500 70.000 40.000 forms int 2000 90.000 10.00	for Theri 2005 16.000 26.000 61.000 2.750 65.000 40.000 to Air co 2005 86.000 14.00	mal uses 2010 17.000 27.000 62.000 3.000 60.000 40.000 nditionin 2010 82.000 18.00	2015 18.000 28.000 63.000 3.500 55.000 40.000 9 2015 78.000 22.00	2020 19.000 64.000 4.000 50.000 40.000 2020 74.000 26.00	2025 20.000 30.000 65.000 4.500 50.000 40.000 2025 70.000 30.00			
Table 18-3 Efficiencies a Item Eff. Trad. fuels Eff. Mod. biomass Eff. Fossil fuels COP heat pumps Low rise buildings Solar share Table 18-4 Penetration of Item Electricity Non-electric Table 18-5 Efficiencies for	nd other Unit (%) (%) (%) (%) (%) fenergy Unit (%) (%) (%) or Air cor Unit	factors 2000 15.000 25.000 60.000 2.500 70.000 40.000 forms int 2000 90.000 10.00 10.00	for Theri 2005 16.000 26.000 61.000 2.750 65.000 40.000 to Air co 2005 86.000 14.00 g 2005	mal uses 2010 17.000 62.000 3.000 60.000 40.000 nditionin 2010 82.000 18.00	2015 18.000 28.000 63.000 3.500 55.000 40.000 9 2015 78.000 22.00	2020 19.000 64.000 50.000 40.000 2020 74.000 26.00	2025 20.000 30.000 65.000 4.500 50.000 40.000 2025 70.000 30.00			
Table 18-3 Efficiencies a Item Eff. Trad. fuels Eff. Mod. biomass Eff. Fossil fuels COP heat pumps Low rise buildings Solar share Table 18-4 Penetration of Item Electricity Non-electric Table 18-5 Efficiencies for Item COP of electric AC	Ind other Unit (%) (%) (%) (%) (%) f energy Unit (%) (%) or Air cor Unit (ratio)	factors 2000 15.000 25.000 60.000 2.500 70.000 40.000 forms int 2000 90.000 10.00 10.00 10.00	for Theri 2005 16.000 26.000 61.000 2.750 65.000 40.000 to Air co 2005 86.000 14.00 g 2.005 2.600	mal uses 2010 17.000 27.000 62.000 3.000 40.000 40.000 nditionin 2010 82.000 18.00 2.700	2015 18.000 63.000 3.500 55.000 40.000 9 2015 78.000 22.00 2015 2.800	2020 19.000 64.000 50.000 40.000 2020 74.000 26.00 2.900	2025 20.000 30.000 65.000 4.500 50.000 40.000 2025 70.000 30.00 2025 3.000			

Table 1	8.1 P	enetration	of	energy forms	into	Snace	heating
a la	0-I F	eneuauon	UI.	energy torms	mu	Space	reaund

Figure 3.36. Snapshot worksheet "SS_Fac-D".

(c) Worksheet "FIN_SS-D" (Table 19)

This worksheet calculates and shows the final energy demand of the Service sector by enduses: thermal uses, air conditioning and specific uses of electricity and by energy form: traditional fuels, modern biomass, electricity, district heat, soft solar, fossil fuels and motor fuels (Figure 3.37).

Final ener	gy demand	in Service	sector
------------	-----------	------------	--------

Table 19-1 Final energy demand for Thermal uses									
ltem	Unit	2000	2005	2010	2015	2020	2025		
Traditional fuels	GWa	0.462	0.527	0.600	0.682	0.762	0.835		
Modern biomass	GWa	0.022	0.042	0.072	0.138	0.235	0.371		
Electricity	GWa	0.022	0.036	0.057	0.089	0.133	0.195		
District heat	GWa	0.000	0.000	0.024	0.045	0.085	0.134		
Soft solar	GWa	0.000	0.001	0.003	0.007	0.012	0.020		
Fossil fuels	GWa	0.300	0.381	0.439	0.519	0.587	0.663		
Total	GWa	0.806	0.987	1.196	1.480	1.814	2.219		
Table 19-2 Final er	nergy de	emand fo	r Air con	ditioning	2015	2020	2025		
item Electricity	CWo	2000	2005	2010	2015	2020	2023		
Electricity Non-alastria	CWa	0.003	0.005	0.000	0.011	0.016	0.020		
non-elecurc Total	GWa	0.000	0.001	0.002	0.003	0.000	0.011		
Table19-3 Final en	ergy de	mand for	Electric	ity speci	fic uses				
ltem	Unit	2000	2005	2010	2015	2020	2025		
Electricity	GWa	2.038	2.600	3.353	4.349	5.644	7.333		
Table 19-4 Total final energy demand in Service sector (by energy forms)									
Item	Unit	2000	2005	2010	2015	2020	2025		
Traditional fuels	GWa	0.462	0.527	0.600	0.682	0.762	0.835		
Modern biomass	GWa	0.022	0.042	0.072	0.138	0.235	0.371		
Electricity	GWa	2.062	2.641	3.418	4.449	5.793	7.553		
District heat	GWa	0.000	0.000	0.024	0.045	0.085	0.134		
Soft solar	GWa	0.000	0.001	0.003	0.007	0.012	0.020		
Fossil fuels	GWa	0.301	0.382	0.441	0.522	0.593	0.674		
Motorfuels	GWa	0.316	0.419	0.555	0.738	0.975	1.277		
Tota	GWa	3.163	4.012	5.114	6.582	8.455	10.865		

Figure 3.37. Snapshot of worksheet "FIN SS-D".

3.3.10 Worksheets Showing the Final Results of MAED_D Model (Tables 20 and 21)

The final results of the energy demand analysis for the entire system under study are shown in both energy unit specified by the user in cells E50 and L50 of worksheet "Defs".

(a) Worksheet "Final-D" (Table 20)

This worksheet calculates and stores the final set of results of final energy demand analysis worked out by MAED_D in the energy unit specified by the user in cell E50 of worksheet "Defs" (default: GWa). It consists of 12 tables. The first table (Table 20-1) gives the total final energy demand and its break-up into various energy forms (traditional fuels, modern biomass. electricity, district heat, soft solar, fossil fuels, motor fuels, coke & steam coal, and feedstock). The next table (Table 20-2) shows the values of final energy demand per capita (MWh/cap) and final energy demand per monetary unit of GDP (kWh/US\$). The third table (Table 20-3) reports on the values of total final energy demand by sector. The sectors considered here are: Industry, which is split further into Manufacturing and ACM (Agriculture, Construction and Mining), Transportation (split further into freight and passenger subsectors), Household and Service. The final energy demand of each of the nine energy forms contained in Table 20-1 is then disaggregated in Tables 20-4 to 20-12 by the sectors mentioned for Table 20-3. Figure 3.38 illustrates the content of Tables 20-1 to 20-4. Tables 20-5 to 20-12 are similar to Table 20-4 but are related to other energy forms.
	ergy dema	and 					
Table 20-1 Final e	nergy dem	and by en	ergyform	1			
tem	Unit	2000	2005	2010	2015	2020	2025
Traditional fuels	GWa	7,912	7.992	7,987	7.898	7.756	6.765
Modern biomass	GWa	0,910	1.647	2,622	3,913	5.587	7.775
Electricity	GWa	3,822	5.216	7.103	9,605	12.803	16.765
District heat	GWa	0.064	0.080	0.123	0.245	0.404	0.661
Soft solar	GWa	0.000	0.003	800.0	0.027	0.055	0.112
Fossilfuels	GWa	5234	6.236	7.392	8.584	10.045	11.786
Matorfuels	GWa	5.754	6.449	7.326	8.411	9.737	11.275
Coke & steam coal	GWa	0.778	0.846	0.999	1.089	1.096	0.968
Feedstock	GWa	D.882	1.159	1.521	1,926	2.376	2.794
Total	GWa	25,356	29.627	35,081	41.696	49.858	58,901
Table 20-2 Final e tem FE per capita FE per G DP	nergy dem Unit [MWh/cap] [kWh/US\$]	and per ca 2000 <u>11.599</u> 6.620	apita and 2005 <u>11.979</u> 6.061	per GDP 2010 12.659 5.677	2015 13.561 5.389	2020 14.760 5.196	2025 16.027 4.997
Table 20-3 Final e Item	nergy dem	and by se	ctor				
	Unit	2000	2005	2010	2015	2020	2025
Industry	GWa	2000 5,510	2005	2010 9.149	2015 11.384	2020 13.837	2025 16.324
hdustry Manufacturing	GWa GWa	2000 5.510 4.043	2005 7.126 5.370	2010 9.149 7.070	2015 11.384 8.990	2020 13.837 11.119	2025 16.324 13.300
hdustry Manufacturing A CM	GWa GWa GWa	2000 5.510 4.043 1.467	2005 7.126 5.370 1.756	2010 9.149 7.070 2.078	2015 11.384 8.990 2.393	2020 13.837 11.119 2.718	2025 16.324 13.300 3.024
hdustry Manufacturing A CM Transportation	GWa GWa GWa GWa	2000 5.510 4.043 1.467 4.864	2005 7.126 5.370 1.756 5.286	2010 9.149 7.070 2.078 5.872	2015 11.384 8.990 2.393 6.628	2020 13.837 11.119 2.718 7.548	2025 16.324 13.300 3.024 8.615
Industry Manufacturing A CM Transportation Freig.transp.	GWa GWa GWa GWa GWa GWa	2000 5.510 4.043 1.467 4.864 4.061	2005 7.126 5.370 1.756 5.286 4.281	2010 9.149 7.070 2.078 5.872 4.516	2015 11.384 8.990 2.393 6.628 4.780	2020 13.837 11.119 2.718 7.548 5.080	2025 16.324 13.300 3.024 8.615 5.395
hdustry Manufacturing A CM Transportation Freig.transp. Pass.transp.	GWa GWa GWa GWa GWa GWa GWa	2000 5.510 4.043 1.467 4.864 4.061 0.803	2005 7.126 5.370 1.756 5.286 4.281 1.005	2010 9.149 7.070 2.078 5.872 4.516 1.356	2015 11.384 8.990 2.393 6.628 4.780 1.848	2020 13.837 11.119 2.718 7.548 5.080 2.467	2025 16.324 13.300 3.024 8.615 5.395 3.220
hdustry Manufacturing A CM Transportation Freig.transp. Pass.transp. Household	GWa GWa GWa GWa GWa GWa GWa GWa	2000 5,510 4,043 1,467 4,864 4,061 0,803 11,819	2005 7.126 5.370 1.756 5.286 4.281 1.005 13.203	2010 9.149 7.070 2.078 5.872 4.516 1.356 14.947	2015 11.384 8.990 2.393 6.628 4.780 1.848 17.102	2020 13.837 11.119 2.718 7.548 5.080 2.467 20.018	2025 16.324 13.300 3.024 8.615 5.395 3.220 23.097
hdustry Manufacturing A CM Transportation Freig.transp. Pass.transp. Household Service	GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 5,510 4,043 1,467 4,864 4,061 0,803 11,819 3,163	2005 7.126 5.370 1.756 5.286 4.281 1.005 13.203 4.012	2010 9.149 7.070 2.078 5.872 4.516 1.356 14.947 5.114	2015 11.384 8.990 2.393 6.628 4.780 1.848 17.102 6.582	2020 13.837 11.119 2.718 7.548 5.080 2.467 20.018 8.455	2025 16.324 13.300 3.024 8.615 5.395 3.220 23.097 10.865
hdustry Manufacturing A CM Transportation Freig.transp. Pass.transp. Household Service Total	6Wa 6Wa 6Wa 6Wa 6Wa 6Wa 6Wa 6Wa 6Wa 6Wa	2000 5.510 4.043 1.467 4.864 4.061 0.803 11.819 3.163 25.356	2005 7.126 5.370 1.756 5.286 4.281 1.005 13.203 4.012 29.627	2010 9.149 7.070 2.078 5.872 4.516 1.356 14.947 5.114 35.081	2015 11.384 8.990 2.393 6.628 4.780 1.848 17.102 6.582 41.696	2020 13.837 11.119 2.718 7.548 5.080 2.467 20.018 8.455 49.858	2025 16.324 13.300 3.024 8.615 5.395 3.220 23.097 10.865 58.901
Industry Manufacturing A CM Transportation Freig.transp. Pass.transp. Household Service Total Table 20-4 Traditi	GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 5,510 4,043 1,467 4,864 4,061 0,803 11,819 3,163 25,356 by sector	2005 7.126 5.370 1.756 5.286 4.281 1.005 13.203 4.012 29.627	2010 9.149 7.070 2.078 5.872 4.516 1.356 14.947 5.114 35.081	2015 11.384 8.990 2.393 6.628 4.780 1.848 17.102 6.582 41.696	2020 13.837 11.119 2.718 7.548 5.080 2.467 20.018 8.455 49.858	2025 16.324 13.300 3.024 8.615 5.395 3.220 23.097 10.865 58.901
Industry Manufacturing A CM Transportation Freig.transp. Pass.transp. Household Service Total Table 20-4 Traditi Item	GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 5,510 4,043 1,467 4,864 4,061 0,803 11,819 3,163 25,356 Dy sector 2000	2005 7.126 5.370 1.756 5.286 4.281 1.005 13.203 4.012 29.627 29.627	2010 9.149 7.070 2.078 5.872 4.516 1.356 14.947 5.114 35.081 2010	2015 11.384 8.990 2.393 6.628 4.780 1.848 17.102 6.582 41.696 2015	2020 13.837 11.119 2.718 7.548 5.080 2.467 20.018 8.455 49.858 2020	2025 16.324 13.300 3.024 8.615 5.395 3.220 23.097 10.865 58.901 2025
hdustry Manufacturing A CM Transportation Freig.transp. Pass.transp. Household Service Total Table 20-4 Traditi tem hdustry	Unit GWa GWa GWa GWa GWa GWa GWa GWa GWa Onal fuels I Unit GWa	2000 5.510 4.043 1.467 4.864 4.061 0.803 11.819 3.163 25.356 by sector 2000 0.197	2005 7.126 5.370 1.756 5.286 4.281 1.005 13.203 4.012 29.627 29.627 2005 0.195	2010 9.149 7.070 2.078 5.872 4.516 1.356 14.947 5.114 35.081 2010 0.187	2015 11.384 8.990 2.393 6.628 4.780 1.848 17.102 6.582 41.696 2015 0.173	2020 13.837 11.119 2.718 7.548 5.080 2.467 20.018 8.455 49.858 2020 0.151	2025 16.324 13.300 3.024 8.615 5.395 3.220 23.097 10.865 58.901 2025 0.113
hdustry Manufacturing A CM Transportation Freig.transp. Pass.transp. Household Service Total Table 20-4 Traditi tem hdustry Manufacturing	Unit GWa GWa GWa GWa GWa GWa GWa GWa Omal fuels I Unit GWa	2000 5,510 4,043 1,467 4,864 4,061 0,803 11,819 3,163 25,356 by sector 2000 0,197 0,156	2005 7.126 5.370 1.756 5.286 4.281 1.005 13.203 4.012 29.627 2005 0.195 0.153	2010 9.149 7.070 2.078 5.872 4.516 1.356 14.947 5.114 35.081 2010 0.187 0.146	2015 11.384 8.990 2.393 6.628 4.780 1.848 17.102 6.582 41.696 2015 0.173 0.135	2020 13.837 11.119 2.718 7.548 5.080 2.467 20.018 8.455 49.858 2020 0.151 0.117	2025 16.324 13.300 3.024 8.615 5.395 3.220 23.097 10.865 58.901 2025 0.113 0.084
hdustry Manufacturing A CM Transportation Freig.transp. Pass.transp. Household Service Total Table 20-4 Traditi Item Industry Manufacturing A CM	Chit GWa GWa GWa GWa GWa GWa GWa GWa GWa Onal fuels I Unit GWa GWa	2000 5,510 4,043 1,467 4,864 4,061 0,803 11,819 3,163 25,356 by sector 2000 0,197 0,156 0,041	2005 7.126 5.370 1.756 5.286 4.281 1.005 13.203 4.012 29.627 2005 0.195 0.195 0.153 0.042	2010 9.149 7.070 2.078 5.872 4.516 1.356 14.947 5.114 35.081 2010 0.187 0.146 0.041	2015 11.384 8.990 2.393 6.628 4.780 1.848 17.102 6.582 41.696 2015 0.173 0.135 0.038	2020 13.837 11.119 2.718 7.548 5.080 2.467 20.018 8.455 49.858 2020 0.151 0.117 0.034	2025 16.324 13.300 3.024 8.615 5.395 3.220 23.097 10.865 58.901 2025 0.113 0.084 0.029
Industry Manufacturing A CM Transportation Freig.transp. Pass.transp. Household Service Total Table 20-4 Traditi Item Industry Manufacturing A CM Transportation	Chit GWa GWa GWa GWa GWa GWa GWa GWa Onal fuels I Unit GWa GWa GWa	2000 5,510 4,043 1,467 4,864 4,061 0,803 11,819 3,163 25,356 Dy sector 2000 0,197 0,156 0,041 0,000	2005 7.126 5.370 1.756 5.286 4.281 1.005 13.203 4.012 29.627 2005 0.195 0.195 0.153 0.042 0.000	2010 9.149 7.070 2.078 5.872 4.516 1.356 14.947 5.114 35.081 2010 0.187 0.146 0.041 0.000	2015 11.384 8.990 2.393 6.628 4.780 1.848 17.102 6.582 41.696 2015 0.173 0.135 0.038 0.000	2020 13.837 11.119 2.718 5.080 2.467 20.018 8.455 49.858 2020 0.151 0.117 0.034 0.000	2025 16.324 13.300 3.024 8.615 5.395 3.220 23.097 10.865 58.901 2025 0.113 0.084 0.029 0.000
hdustry Manufacturing A CM Transportation Freig.transp. Pass.transp. Household Service Total Table 20-4 Traditi Item Industry Manufacturing A CM Transportation Freig.transp.	Chit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 5,510 4,043 1,467 4,864 4,061 0,803 11,819 3,163 25,356 0,9 sector 2000 0,197 0,156 0,041 0,000 0,000 0,000	2005 7.126 5.370 1.756 5.286 4.281 1.005 13.203 4.012 29.627 29.627 2005 0.195 0.153 0.042 0.000 0.000	2010 9.149 7.070 2.078 5.872 4.516 1.356 14.947 5.114 35.081 2010 0.187 0.146 0.041 0.000 0.000	2015 11.384 8.990 2.393 6.628 4.780 1.848 17.102 6.582 41.696 2015 0.173 0.135 0.D38 0.000 0.000	2020 13.837 11.119 2.718 7.548 5.080 2.467 20.018 8.455 49.858 2020 0.151 0.117 0.034 0.000 0.000	2025 16.324 13.300 3.024 8.615 5.395 3.220 23.037 10.865 58.901 2025 0.113 0.084 0.029 0.000 0.000
hdustry Manufacturing A CM Transportation Freig. transp. Pass. transp. Household Service Total Table 20-4 Traditi tem Industry Manufacturing A CM Transportation Freig. transp. Pass. transp.	Chit GWa GWa GWa GWa GWa GWa GWa GWa GWa GWa	2000 5,510 4,043 1,467 4,864 4,061 0,803 11,819 3,163 25,356 0y sector 2000 0,197 0,156 0,041 0,000 0,000 0,000 0,000	2005 7.126 5.370 1.756 5.286 4.281 1.005 13.203 4.012 29.627 29.627 2005 0.195 0.153 0.042 0.000 0.000	2010 9.149 7.070 2.078 5.872 4.516 1.356 14.947 5.114 35.081 2010 0.187 0.146 0.041 0.041 0.000 0.000 0.000	2015 11.384 8.990 2.393 6.628 4.780 1.848 17.102 6.582 41.696 2015 0.173 0.135 0.038 0.000 0.000 0.000	2020 13.837 11.119 2.718 7.548 5.080 2.467 20.018 8.455 49.858 2020 0.151 0.117 0.034 0.000 0.000 0.000	2025 16.324 13.300 3.024 8.615 5.395 3.220 23.097 10.865 58.901 2025 0.113 0.084 0.029 0.000 0.000 0.000
hdustry Manufacturing A CM Transportation Freig. transp. Pass. transp. Household Service Total Table 20-4 Traditi Item Industry Manufacturing A CM Transportation Freig. transp. Pass. transp. Household	Unit GWa GWa GWa GWa GWa GWa GWa GWa Onal fuels I Unit GWa GWa GWa GWa GWa GWa	2000 5,510 4,043 1,467 4,864 4,061 0,803 11,819 3,163 25,356 Dy sector 2000 0,197 0,156 0,041 0,000 0,000 0,000 0,000 0,000 7,253	2005 7.126 5.370 1.756 5.286 4.281 1.005 13.203 4.012 29.627 2005 0.195 0.153 0.042 0.000 0.000 0.000 7.269	2010 9.149 7.070 2.078 5.872 4.516 14.947 5.114 35.081 2010 0.187 0.146 0.041 0.000 0.000 0.000 7.201	2015 11.384 8.990 2.393 6.628 4.780 1.848 17.102 6.582 41.696 2015 0.173 0.135 0.038 0.000 0.000 0.000 7.044	2020 13.837 11.119 2.718 7.548 5.080 2.467 20.018 8.455 49.858 2020 0.151 0.117 0.034 0.000 0.000 0.000 6.843	2025 16.324 13.300 3.024 8.615 5.395 3.220 23.097 10.865 58.901 2025 0.113 0.029 0.000 0.000 0.000 5.816
hdustry Manufacturing A CM Transportation Freig.transp. Pass.transp. Household Service Total Table 20-4 Traditi tem hdustry Manufacturing A CM Transportation Freig.transp. Pass.transp. Household Service	Unit GWa GWa GWa GWa GWa GWa GWa GWa Onal fuels I Unit GWa GWa GWa GWa GWa GWa GWa GWa	2000 5,510 4,043 1,467 4,864 4,061 0,803 11,819 3,163 25,356 0y sector 2000 0,197 0,156 0,041 0,000 0,000 0,000 7,253 0,462	2005 7.126 5.370 1.756 5.286 4.281 1.005 13.203 4.012 29.627 2005 0.195 0.195 0.163 0.042 0.000 0.000 0.000 7.269 0.527	2010 9.149 7.070 2.078 5.872 4.516 1.356 14.947 5.114 35.081 2010 0.187 0.146 0.041 0.000 0.000 7.201 0.600	2015 11.384 8.990 2.393 6.628 4.780 1.848 17.102 6.582 41.696 2015 0.173 0.135 0.038 0.000 0.000 0.000 7.044 0.682	2020 13.837 11.119 2.718 7.548 5.080 2.467 20.018 8.455 49.858 2020 0.151 0.117 0.034 0.000 0.000 0.000 0.000 6.843 0.762	2025 16.324 13.300 3.024 8.615 5.395 3.220 23.097 10.865 58.901 2025 0.113 0.084 0.029 0.000 0.000 0.000 5.816 0.835

Figure 3.38. Snapshot of Tables 20-1 to 20-4 of worksheet "Final-D".

(b) Worksheet "Final Results (User Unit)" (Table 21)

This worksheet just converts the final results from worksheet "Final-D" from the energy unit specified in cell E50 to the energy unit chosen by the user in cell L50 of the worksheet "Defs". It has the same structure as the worksheet "Final-D" (Figure 3.39).

Total final energy demand (User unit)

Table 21-1 Final energy demand by energy form

ltem	Unit	2000	2005	2010	2015	2020	2025
Traditional fuels	[Mtoe]	5.960	6.020	6.016	5.949	5.842	5.095
Modern biomass	[Mtoe]	0.685	1.240	1.975	2.947	4.208	5,857
Electricity	[Mtoe]	2.879	3.929	5.350	7.234	9.643	12.628
District heat	[Mtoe]	0.048	0.061	0.092	0.184	0.304	0.498
Soft solar	[Mtoe]	0.000	0.002	0.006	0.020	0.041	0.085
Fossilfuels	[Mtoe]	3.942	4.697	5.568	6.465	7.586	8,878
Motorfuels	[Mtoe]	4.334	4.857	5.518	6.335	7.334	8,493
Coke & steam coal	[Mtoe]	0.586	0.637	0.753	0.820	0.825	0.729
Feedstock	[Mtoe]	0.664	0.873	1.145	1.450	1.789	2.104
Total	[Mtoe]	19.099	22,316	26.424	31,407	37.554	44,366

Table 21-2 Final energy demand per capita and per GDP

[Mtoe

[Mtoe]

Service

Tota

ltem	Unit	2000	2005	2010	2015	2020	2025
FE per capita	[MWh/cap]	11.599	11.979	12.659	13,561	14.760	16.027
FE per GDP	[kWh/US\$]	6.620	6.061	5.677	5.389	5.196	4,997

Table 21-3 Final energy demand by sector

ltem	Unit	2000	2005	2010	2015	2020	2025
Industry	[Mtoe]	4.150	5.368	6.891	8.575	10.423	12.296
Manufacturing	[Mtoe]	3.045	4.045	5.326	6.772	8.375	10.018
ACM	[Mtoe]	1.105	1.323	1.585	1.803	2.047	2.278
Transportation	[Mtoe]	3.663	3.982	4.423	4.992	5.685	6,489
Freig. transp.	[Mtoe]	3.059	3.224	3.402	3.600	3.827	4.063
Pass, transp.	[Mtoe]	0.604	0.757	1.021	1.392	1.858	2.426
Household	[Mtoe]	8.902	9.945	11.259	12,882	15.078	17.397
Convine	[Mtoe]	2.383	3.022	3.852	4.958	6.369	8,184
Se vice							
Total	[Mtoe]	19.099	22.316	26.424	31,407	37.554	44,366
Tota Toble 21-4 Traditio	[Mtoe] nal fuels by see	19.099 ctor	22.316	26.424	31,407	37.554	44.366
Tota Table 21-4 Traditio	[Mtoe] nal fuels by sea Unit	19.099 ctor 2000	22.316	26.424	31.407 2015	2020	44.366 2025
Tota Table 21-4 Traditio Item	[Mtoe] nal fuels by sea Unit [Mtoe]	19.099 ctor 2000 0.149	22.316 2005 0.147	26.424 2010 0.140	31.407 2015 0.130	37.554 2020 0.114	44.366 2025 0.085
Total Table 21-4 Traditio Item Industry Manufacturing	[Mtoe] nal fuels by sea Unit [Mtoe] [Mtoe]	19.099 ctor 2000 0.149 0.117	22.316 2005 0.147 0.115	26.424 2010 0.140 0.110	31.407 2015 0.130 0.101	37.554 2020 0.114 0.088	44.366 2025 0.085 0.063
Total Table 21-4 Traditio Item Industry Manufacturing ACM	[Mtoe] nal fuels by sea Unit [Mtoe] [Mtoe]	19.099 ctor 2000 0.149 0.117 0.031	22.316 2005 0.147 0.115 0.032	26.424 2010 0.140 0.110 0.031	31,407 2015 0.130 0.101 0.029	37.554 2020 0.114 0.088 0.025	44.366 2025 0.085 0.063 0.022
Total Table 21-4 Traditio Item Industry Manufacturing ACM Transportation	[Mtoe] nal fuels by sea Unit [Mtoe] [Mtoe] [Mtoe] [Mtoe]	19.099 ctor 2000 0.149 0.117 0.031 0.000	22.316 2005 0.147 0.115 0.032 0.000	26.424 2010 0.140 0.110 0.031 0.000	31,407 2015 0,130 0,101 0,029 0,000	37.554 2020 0.114 0.088 0.025 0.000	44.366 2025 0.085 0.063 0.022 0.000
Total Table 21-4 Traditio Item Industry Manufacturing ACM Transportation Freig. transp.	[Mtoe] nal fuels by sea Unit [Mtoe] [Mtoe] [Mtoe] [Mtoe] [Mtoe]	19.099 ctor 2000 0.149 0.117 0.031 0.000 0.000	22.316 2005 0.147 0.115 0.032 0.000 0.000	26.424 2010 0.140 0.110 0.031 0.000 0.000	31,407 2015 0,130 0,029 0,000 0,000	37.554 2020 0.114 0.088 0.026 0.000 0.000	44.366 2025 0.085 0.063 0.022 0.000 0.000
Total Table 21-4 Traditio Item Industry Manufacturing ACM Transportation Freig. transp. Pass. transp.	[Mtoe] nal fuels by sea [Mtoe] [Mtoe] [Mtoe] [Mtoe] [Mtoe] [Mtoe]	19.099 ctor 0.149 0.117 0.031 0.000 0.000	22.316 2005 0.147 0.115 0.032 0.000 0.000 0.000	26.424 2010 0.140 0.110 0.031 0.000 0.000 0.000	31,407 2015 0,130 0,000 0,000 0,000 0,000	37.554 2020 0.114 0.088 0.026 0.000 0.000 0.000	44.366 2025 0.085 0.003 0.022 0.000 0.000 0.000

Figure 3.39. Snapshot of Tables 21-1 to 21-4 of worksheet "Final results (User unit)".

6.02

5,96(

0.45

6.016

0.51

5,949

0.574

5.84

0.8

5.09

Once the analysis of a particular scenario has been completed through the application of MAED_D, the user should carefully review the whole set of results, once again, in addition to the review of the particular results contained in various worksheets that the user would have been doing throughout the exercise. During the reconstruction of base year energy consumption patterns within the model the user should compare after each run of the program the final energy consumption by energy form and by sector calculated by MAED_D with the final energy consumption from the final energy balance of the country/region for the base year. If any difference persists, further adjustments of input data and additional runs of the program are necessary. The printout of the entire Demonstration Case is shown in Appendix 1 for illustration purposes. Each table/sub-table presents the selected values for every year which has been analyzed and chosen for printing to facilitate the comparison between years. The project (case study) and scenario description, as specified in worksheet "Descr", is included as a cover page, in order to permit a quick identification of the printout. This

identification is rather convenient particularly when several scenarios of development have to be investigated for the same case study.

If a thorough study of the report and its comparison with the reports of other scenarios of the same case study (if available) brings to light some weaknesses in any parts of the results, the user should carefully review both, the corresponding input data and the relevant scenario assumptions, make necessary changes and rerun the model MAED_D. This process of reiteration should be continued until the user feels satisfied with the results of the scenario being investigated

4 INPUT AND DERIVED VARIABLES OF MAED MODULE 1

4.1 Introduction

In order to be able to operate a mathematical model properly and to appreciate fully the significance of its output results, one needs to know: (i) the exact definitions of its input and output parameters (variables), and (ii) the way each output parameter is worked out by the model using the input data provided by the user. This section provides information on the first of the above two aspects concerning the Module 1 of MAED model; the second aspect is covered in Section 5.

4.2 Input variables

Table 4.1 provides a list of the input variables of MAED_D, together with their definitions. Also included in this table are a few variables for which input values are not required to be entered by the user; the model assumes their values as the balance left after deducting from the whole the values of certain other input variables (please refer to Section 3.3.2.3). Each variable of MAED_D is assigned a symbolic name. The first column of Table 4.1 lists the symbolic names of the input variables; the second column contains their definitions; the third column spells out the corresponding units of measurement; and the last column provides additional comments, if required to clarify the significance of a particular variable.

The variables in Table 4.1 are arranged in 6 different groups: Demography, GDP formation, Industry, Transportation, Household and Service. Some of the groups have been split into two or more subgroups in order to facilitate the user in locating the position of a particular parameter of interest within the table. For example, the parameters corresponding to the Transportation group have been split into three subgroups: (i) Freight transportation, (ii) Intracity passenger transportation, and (iii) Intercity passenger transportation. The correspondence of each group/subgroup in Table 4.1 with the input parameters covered in various tables of the EXCEL worksheets of MAED_D has also been shown under the heading of each group/subgroup.

4.3 Derived variables

Table 4.2 provides information about the derived/output variables of MAED_D. Of the variables listed in this table, all but 13 appear in various tables contained in the EXCEL worksheets of MAED_D. The 13 additional variables are interim derived variables i.e. they appear only in some intermediate steps of the calculations described in Section 5 but their values are not readily available in the worksheets of MAED_D; they have been underlined in Table 4.2 as well as in Section 5 in order to facilitate their easy identification.

As against four columns in Table 4.1, Table 4.2 has only three columns: the first column lists the symbolic names of the derived variables, the second column gives their units of measurement, while the third column provides explanatory notes to define these variables.

The variables listed in Table 4.2 have been arranged in groups and subgroups essentially according their correspondence with the derived parameters included in various tables of the EXCEL worksheets of MAED_D. It should be noted that the units indicated in this table for the variables representing energy values are GWa, which correspond to the default energy unit of the model. However, as discussed in Sections 3.3.2.1 and 5.2, the user can readily arrange to have the model's output results worked out and displayed in some other energy unit by providing the name of that unit and the corresponding value of the conversion factor in the worksheet "Defs" of MAED_D.

VARIABLE	DEFINITION	UNIT	COMMENT
DEFINITION	S:		
(see worksheet	"Defs" of MAED_D.xls)		
NRY	Number of reference years for the case study.	ı	Max. 25
RY(I)	Reference years for the case study. I=1,,NRY	ı	
NSAGR	Number of subsectors of Agriculture sector.	ı	Max. 10
NSCON	Number of subsectors of Construction sector.	ı	Max. 10
NIMSN	Number of subsectors of Mining sector.	I	Max. 10
NSMAN	Number of subsectors of Manufacturing sector.	ı	Max. 10
NSSER	Number of subsectors of Service sector.	I	Max. 10
NMFT	Number of freight transportation modes.	I	Max. 15
NMIT	Number of intercity passenger transportation modes.	ı	Max. 15
NCTIT	Number of car types in intercity passenger transportation.	ı	Max. 5
NMUT	Number of intracity (urban) passenger transportation modes.	I	Max. 15
NTF	Number of fuels used in Transportation sector.		Max. 8
NUDT	Number of urban dwelling types.	ı	Max. 10
NRDT	Number of rural dwelling types.		Max. 10

Table 4.1a List and Definition of input variables of module MAED_D of MAED Model

DEMOGRAP (see worksheet	HY: "Demogr-D" of MAED_D.xls)		
РО	Total population.	milion persons	May be calculated by the program, if annual growth rate is entered.
POGR	Average annual growth rate of population between the previous and current model years.	% p.a.	May be calculated by the program, if total population is entered.
PURB	Share of urban population.	%	According to UN definition.
CAPUH	Average household size in urban areas.	persons/ household	The term household is used in the sense "persons living together in one dwelling".
CAPRH	Average household size in rural areas.	persons/ household	The term household is used in the sense "persons living together in one dwelling".
PLF	Share of population of age 15 - 64 in the total population (potential labour force).	%	
PARTLF	Share of potential labour force actually working.	%	
POPLC	Share of population living in large cities.	%	Variable used to determine the approximate potential market for intracity mass transportation.

Table 4.1b List and definition of input variables of demography

formation
GDP
es of
variable
of input
definition
and
List
4.1c
Table

GDP FORN (see workshe	MATION: 킞et "GDP-D" of MAED_D.xls)		
Y	Total GDP.	billion MU	MU stands for monetary units of base year.
YGR	Average annual growth rate of GDP between the previous and current model years.	% p.a.	
PYAGR PYCON PYMIN PYMAN	Distribution of GDP formation by kind of economic activity. Sectors considered are: Agriculture (AGR), Construction (CON), Mining (MIN), Manufacturing (MAN), Service (SER) and Energy (EN).	%	The sum of these variables must be 100. Therefore, direct input is provided only for the first five of them, while the share for the last one (PYEN) is calculated by the program as the remainder.
PYEN			
PVAAG(I)	Distribution of Agriculture (AGR) sector value added by subsectors. I=1,,NSAGR	%	The sum of these variables must be 100. Therefore, direct input is provided only for the first (NSAGR-1) subsectors, while the program calculates the share for the last one as the remainder.
PVACO(I)	Distribution of Construction (CON) sector value added by subsectors. I=1,,NSCON	%	The sum of these variables must be 100. Therefore, direct input is provided only for the first (NSCON-1) subsectors, while the program calculates the share for the last one as the remainder.
PVAMI(I)	Distribution of Mining (MIN) sector value added by subsectors. I=1,,NSMIN	%	The sum of these variables must be 100. Therefore, direct input is provided only for the first (NSMIN-1) subsectors, while the program calculates the share for the last one as the remainder.
PVAMA(I)	Distribution of Manufacturing (MAN) sector value added by subsectors. I=1,,NSMAN	%	The sum of these variables must be 100. Therefore, direct input is provided only for the first (NSMAN-1) subsectors, while the program calculates the share for the last one as the remainder.
PVASE(I)	Distribution of Service (SER) sector value added by subsectors. I=1,,NSSER	%	The sum of these variables must be 100. Therefore, direct input is provided only for the first (NSSER-1) subsectors, while the program calculates the share for the last one as the remainder.

INDUSTRY:			
ENERGY INTENS (see worksheet "Er	ITIES IN INDUSTRY (AGRICULTURE, CONSTRUCTION, MINING / nInt-D" of MAED_D.xIs)	AND MANUF	ACTURING):
EI.MF.AG(I)	Specific motor fuel consumption per monetary unit of value added (energy intensity) of subsector I of Agriculture sector. I=1,,NSAGR	kWh/MU	Expressed in terms of final energy per MU.
EI.MF.CO(I)	Specific motor fuel consumption per monetary unit of value added (energy intensity) of subsector I of Construction sector. I=1,,NSCON	kWh/MU	Expressed in terms of final energy per MU.
EI.MF.MI(I)	Specific motor fuel consumption per monetary unit of value added (energy intensity) of subsector I of Mining sector. I=1,,NSMIN	kWh/MU	Expressed in terms of final energy per MU.
EI.MF.MA(I)	Specific motor fuel consumption per monetary unit of value added (energy intensity) of subsector I of Manufacturing sector. I=1,,NSMAN	kWh/MU	Expressed in terms of final energy per MU.
EI.ELS.AG(I)	Specific electricity consumption (for specific uses) per monetary unit of value added (energy intensity) of subsector I of Agriculture sector. I=1,,NSAGR	kWh/MU	Expressed in terms of final energy per MU.
EI.ELS.CO(I)	Specific electricity consumption (for specific uses) per monetary unit of value added (energy intensity) of subsector I of Construction sector. I=1,,NSCON	kWh/MU	Expressed in terms of final energy per MU.
EI.ELS.MI(I)	Specific electricity consumption (for specific uses) per monetary unit of value added (energy intensity) of subsector I of Mining sector. I=1,,NSMIN	kWh/MU	Expressed in terms of final energy per MU.
EI.ELS.MA(I)	Specific electricity consumption (for specific uses) per monetary unit of value added (energy intensity) of subsector I of Manufacturing sector. I=1,,NSMAN	kWh/MU	Expressed in terms of final energy per MU.
EI.TU.AG(I)	Specific useful energy consumption for thermal uses per monetary unit of value added (energy intensity) of Subsector I of Agriculture sector. I=1,,NSAGR	kWh/MU	
EI.TU.CO(I)	Specific useful energy consumption for thermal uses per monetary unit of value added (energy intensity) of Subsector I of Construction sector. I=1,,NSCON	kWh/MU	
EI.TU.MI(I)	Specific useful energy consumption for thermal uses per monetary unit of value added (energy intensity) of Subsector I of Mining sector. I=1,,NSMIN	kWh/MU	
EI.TU.MA(I)	Specific useful energy consumption for thermal uses per monetary unit of value added (energy intensity) of Subsector I of Manufacturing sector. I=1,,NSMAN	kWh/MU	

Table 4.1d List and definition of input variables of energy intensities in industry

		-1																	
	EMAND OF AGRICULTURE, CONSTRUCTION AND MINING		The sum of energy carrier penetrations for each sector must be 100. Therefore, direct input is provided only for the first four processory while the provided for the local processory.	(Fossil fuels) is calculated by the program as the remainder.															
	NERGY D		%																
ruction and mining (acm):	F ENERGY CARRIERS INTO USEFUL THERMAL E		Penetration of energy carrier I into the useful thermal energy demand market of economic sector J.	Energy carriers: (I=1) Traditional fuels (TF)	(I=2) Modern biomass (MB)	(I=3) Electricity (EL)	(I=5) Fossil fuels (FF)	Sectors: (J=1) Agriculture (AGR)	(J=2) Construction (CON) (J=3) Mining (MIN)										
constr	PENETRATION OF	(ACIM). (SEE I ADIES	TFPAGR	MBPAGR	ELPAGR	SSPAGR	FFPAGR		TFPCON	MBPCON	ELPCON	SSPCON	FFPCON	TFPMIN	MBPMIN	ELPMIN	SSPMIN	FFPMIN	

TABLE4.1e List and definition of input variables of penetration of energy carriers into useful thermal energy demand of agriculture,

E E E E E E E E E E E E E E E E E E E	IENCIES OF FUELS FOR THERMAL USES IN AGRICULTURE, CONSTRUCTION AND MINING (ACM): 5-7 in worksheet "ACMFac-D" of MAED_D.xls)	Average efficiency of the use of fuel I for thermal % processes in the economic sector J, relative to the efficiency of electricity.	<i>Fuels</i>: (1=1) Traditional fuels (TF)(1=2) Modern biomass (MB)(1=3) Fossil fuels (FF)	Sectors: (J=1) Agriculture (AGR) (J=2) Construction (CON) (J=3) Mining (MIN)
AGE E Ables 5-4 GR NN NN AIN NN NN NN NN	AGE EFICIENCIES O ables 5-5 to 5-7 in worksh	GR Average DN processe: IN efficienc	AGR XON AIN AIN AIN AIN (I= (I= (I=	DN Sectors: (

Table 4.1f List and definition of input variables of efficiencies of fuels for thermal uses in agriculture, construction and mining (ACM)

Table 4.1g List and definition of input variables of shares of useful thermal energy demand in manufacturing SHARES OF USEFUL THERMAL ENERGY DEMAND IN MANUFACTURING:

(see worksheet "ManFac	-1-D" of MAED_D.xls)		
PUSIND (I,J)	Share of thermal process category J in the useful thermal energy demand of Subsector I of Manufacturing sector. I=1,,NSMAN; Thermal processes: (J=1) Steam generation (STM) (J=2) Furnace/direct heat (FUR) (J=3) Space/water heating (SWH)	%	The sum of shares for the same subsector must be 100. Therefore, direct input is provided only for the first two process categories, while the share for the last process category (Space/water heating) is calculated by the program as the remainder.
PENETRATION OF E (see Table 8-1 in worksh	NERGY CARRIERS INTO USEFUL THERMAL ENERGY DE eet "ManFac2-D" of MAED_D.xls)	IMAND OF N	IANUFACTURING:
ELPMAN(J) ELP.STM.MAN ELP.FUR.MAN ELP.SWH.MAN	Penetration of electricity into the market J of useful thermal energy demand in Manufacturing industries. <i>Thermal processes</i> : (J=1) Steam generation (STM)	%	Including heat pump contribution for Steam generation and Space/water heating.
	(J=2) Furnace/direct heat (FUR) (J=3) Space/water heating (SWH)		
HPP.STM.MAN HPP.SWH.MAN	Contribution of heat pumps to Steam generation and Space/water heating uses in Manufacturing industries.	%	As fraction of electricity penetration in the respective markets.
DHP.STM.MAN	District heat penetration for Steam generation and Space/water	%	
CGP.STM.MAN	Share of the Manufacturing demand for Steam and	%	
CGP.SWH.MAN	Space/water heating which is supplied by Fossil fuels and Modern hiomase but with conservation of electricity		
SSP.STM.MAN	Solar penetration for Steam generation and Space/water	%	
SSP.SWH.MAN	heating in Manufacturing.	ò	
TFP:MAN(J)	Fenetration of 1 radiational fuels on the various markets of the useful thermal energy demand in Manufacturing industries.	%	
TFP.FUR.MAN	Thermal processes: (J=1) Steam generation (STM)		
TFP.SWH.MAN	(J=2) Furnace/direct heat (FUR) (J=3) Space/water heating (SWH)		
MBPMAN(J)	Penetration of Modern biomass on the various markets of the	%	
MBP.STM.MAN	useful thermal energy demand in Manufacturing industries.		
MBP.FUR.MAN	Thermal processes: (J=1) Steam generation (STM)		
MBP.SWH.MAN	(J=2) Furthace/direct neat (FUK)		
	(J=3) Space/water heating (SWH)		

EFFICIENCIES AND ((see Table 8-2 in work	DTHER RATIOS FOR USEFUL THERMAL ENERGY DEMA sheet "ManFac2-D" of MAED_D.XIS)	ND IN MANUF	ACTURING:
HPEMAN	Coefficient of performance of (electric) heat pumps in Manufacturing industries.	ratio	Thermal energy extracted per unit of electric energy input.
FIDS	Approximate share of useful thermal energy demand of Manufacturing industries that can be met by solar installations.	%	Note: (100 – FIDS) determines the backup requirements.
EFFCOG	System efficiency of cogeneration.	%	(Heat + electricity) output / Heat content of fuels used
HELRAT MBSCOG	Ratio heat/electricity in output of cogeneration systems. Share of Modern biomass in the fuel used in commerstion systems (Fossil fuels and Modern	ratio %	kWh steam / kWh electricity
FFEMAN(J) FFE.STM.MAN FFE.FUR.MAN FFE.SWH.MAN	biomass). Average efficiency of Fossil fuel use for thermal process J in Manufacturing industries, relative to the efficiency of electricity. <i>Thermal processes:</i> (J=1) Steam generation (STM) (J=2) Furnace/direct heat (FUR) (J=3) Space/water heating (SWH)	%	
TFEMAN(J) TFE.STM.MAN TFE.FUR.MAN TFE.SWH.MAN	Average efficiency of Traditional fuel use for thermal process J in Manufacturing industries, relative to the efficiency of electricity. <i>Thermal processes:</i> (J=1) Steam generation (STM)	%	
MBEMAN(J) MBE.STM.MAN MBE FLIR MAN	Average efficiency of Modern biomass use for thermal process J in Manufacturing industries, relative to the efficiency of electricity.	%	
MBE.SWH.MAN	Thermal processes: (J=1) Steam generation (STM) (J=2) Furnace/direct heat		
	(FUR) (J=3) Space/water heating (SWH)		

Table 4.1h List and definition of input variables of efficiencies and other ratios for useful thermal energy demand in manufacturing

Table 4.1i List and definition of input variables of steel production and feed stock consumption

STEEL PRODUCTION AND FEEDSTOCK CONSUMPTION:

(see Table 8-4 in work	sheet "ManFac2-D" of MAED_D.xls)		
CPST(1) CPST(2)	Constants used to project the amount of steel production.	See comment	First constant expressed in million tons of steel; the second in tons of steel per thousand MU of value added by the first Manufacturing subsector. For seek of consistency, the steel-making industry must be considered, from both energy consumption and value added viewpoints, in the first Manufacturing subsector.
BOF	Share of steel produced in non-electric furnaces.	%	For seek of consistency, the electricity requirements for electric steel-making must be reflected in the electricity intensity for specific uses of the first Manufacturing subsector.
IRONST	Specific consumption of pig iron in non-electric steel works.	%	Tons of pig iron per ton of non-electric steel produced; the residual is assumed to be scrap.
EICOK	Coke input in blast furnaces per unit output of pig iron.	kg/ton	
CFEED(1) CFEED(2)	Constants used to project the feedstock requirements of the petrochemical industry.	See comment	First constant expressed in million tons of feedstock; the second in tons of feedstock per thousand MU of value added by the first Manufacturing subsector. For seek of consistency, the petrochemical industry must be considered, from both energy consumption and value added viewpoints, in the first Manufacturing subsector.

transportation	
tht	
freig	
of	
variables	
of input	
definition	
st and	
Ľ	
4.1j	
Table	

TRANSPORI	'ATION:		
FREIGHT TRAN (see worksheets	ISPORTATION: "FrTrp-D" and "Defs" in MAED_D.xls)		
CTKFT(I)	Coefficients of variable terms in the equation used for the projecting total freight transportation. I = 1, 2, 3,,NS	km/MU	NS = NSAGR + NSCON + NSMIN + NSMAN + NSSER + 1 tkm = ton-kilometer
CKFT	Constant term in the equation used for projecting total freight transportation.	10 ⁹ tkm	
SFTM(I)	Share of transportation mode I in the total demand for freight transportation. I=1,,NMFT	%	The sum of these shares must be 100. Therefore, direct input is provided only for the first (NMFT-1) transportation modes, while the share for the last one is calculated by the program as the remainder.
EIFTM(I)	Energy intensity (specific energy consumption) of freight transportation mode I. I=1,,NMFT co	See omment	Measured in the natural units indicated by the user in worksheet Defs. The user can choose only the numerator of the energy intensity unit, e.g. liter of motor fuel, kgce of steam coal etc. The denominator (100t-km) is built-in in the equations of the model.
FCFT(I)	Fuel code of freight transportation mode I. I=1,,NMFT	1	Code numbers from 1 to 8, as defined in cells K38 ÷ K45 of worksheet "Defs". Same fuel code number may apply for several freight transportation modes.
CFFT(I)	Conversion factor from the user-specified natural unit of specific fuel consumption to kWh/100tkm of a freight transportation mode using the fuel I. I=1,,NTF		Specified by the user in cells M38 ÷ M45 of worksheet "Defs".

Table 4.1k List and definition of input variables of intracity passenger transportation

INTRACITY PAS (see worksheets	SSENGER TRANSPORTATION: "PassIntra-D" and "Defs" of MAED_D.xls)		
DU	Average intracity (in urban areas) distance travelled per person per day.	km/pers./day	Applies only to the population living in large cities.
LFUTM(I)	Average load factor of intracity (urban) passenger transportation mode I. I=1,,NMUT	person/ transportation mode	
SUTM(I)	Share of transportation mode I in the total demand for intracity (urban) passenger transportation. =1,,NMUT	%	The sum of these shares must be 100. Therefore, direct input is provided only for the first (NMUT-1) transportation modes, while the share for the last one is calculated by the program as the remainder.
EIUTM(I)	Energy intensity (specific energy consumption) of transportation mode I in intracity (urban) travel. I=1,NMUT	See comment	Measured in the natural units indicated by the user in worksheet Defs. The user can choose only the numerator of the energy intensity unit, e.g. liter of motor fuel etc. The denominator (100 km) is built-in in the equations of the model.
FCUT(I)	Fuel code of intracity (urban) transportation mode I. I=1,,NMUT		Code numbers from 1 to 8, as defined in cells K38 ÷ K45 of worksheet "Defs". Same fuel code number may apply for several urban transportation modes. Steam coal is not a valid fuel for urban transportation.
CFPT(I)	Conversion factor from the user specified natural unit of specific fuel consumption to kWh/pkm of a passenger transportation mode using the fuel I. I=1,,NTF		Specified by the user in cells 038 ÷ 045 of worksheet "Defs".

INTERCITY P (see workshee	ASSENGER TRANSPORTATION: ets "PassInter-D" and "Defs" of MAED D.xls)		
D	Average intercity distance travelled per person per	km/pers./yr	Applies to total population.
CO DIC	year. Inverse of car ownership ratio. Average intercity distance driven per car per year.	persons/car km/car/yr	Ratio of population to total number of cars. Note: The assumption on DIC, together with the average distance
	· - -	,	driven in urban areas travel as implied by assumptions on PO, POPLC, DU, share of cars in urban passenger transportation and average load factor of cars in urban travel, should match the total
LFITM(I)	Average load factor of intercity transportation mode I.	person/	Everage distance unveniber car per year. For planes the unit is "% seats occupied". The different truce of each are pretimed to here the come average
	LFITM(I) = LFCIT for I = 2, 3, 4, 5 and 6 (cars)	uarisp. riloue (see comment)	load factor (LFCIT) in intercity travel.
SITC(I)	Share of car type I in the intercity passenger travel by car. I=1,,NCTIT	%	The sum of these shares must be 100. Therefore, direct input is provided only for the first (NCTIT-1) car types, while the share for
SITM(I)	Share of public transportation mode I in the intercity passenger travel by public modes (excluding travel by car). 1=1,,NMIT-NCTIT	%	the last one is calculated by the program as the remainder. The sum of these shares must be 100. Therefore, direct input is provided only for the first (NMIT–NCTIT-1) transportation modes, while the share for the last one is calculated by the program as the
EIITM(I)	Energy intensity (specific energy consumption) of transportation mode I in intercity travel. I=1,NMIT	See comment	remainder. Measured in the natural units indicated by the user in worksheet Defs. The user can choose only the numerator of the energy intensity unit, e.g. liter of motor fuel, kgce of steam coal etc. The
FCIT(I)	Fuel code of intercity transportation mode I. I=1,,NMIT	I	denominator (1000 seat-km for planes and 100 km for other modes) is built-in in the equations of the model. Code numbers from 1 to 8, as defined in cells K38 ÷ K45 of worksheet "Defs". Same fuel code number may apply for several
CMFMIS(1) CMFMIS(2)	Constants used to project the total motor fuel demand for international and military (miscellaneous) transportation.	See comments	intercity transportation modes. First constant expressed in the energy unit specified by the user in cell E50 of worksheet "Defs"; the second in kWh/MU of GDP.

Table 4.11 List and definition of input variables of intercity passenger transportation

Table4.1m List and definition of input variables of urban households

HOUSEHOLL	ä		
URBAN HOUSE	:HOLDS:		
(see worksheet '	'US_HH_Ur-D" of MAED_D.xls)		
HSMON	Fraction of urban dwellings in areas where space heating	%	Relative to the total number of urban dwellings.
	is required.		
DDD	Degree-days for urban dwellings.	degree–day	The definition used here is: (a) based on Celcius degrees
			witi a uneshold or اه تر (ت) based on monuny average temperature: and (c) averaged over regions (weighted by
	Eraction of urban dwallings per type 1=1 NI IDT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	urban population) which require space heating.
		2	areas where space heating is required.
			The sum of these fractions must be 100. Therefore, direct
			input is provided only for the first (NUDT-1) dwelling types, while the share for the last type is calculated by the program
			as the remainder.
(I)SMON	Average size of urban dwellings by type. I=1,,NUDT	sqm/dw	Measured in terms of floor area.
UAREAH(I)	Fraction of floor area that is actually heated in urban	%	Relative to the average dwelling size UDWS(I).
	areas, by dwelling type. I=1,,NUDT		
UK(I)	Specific heat loss rate by urban dwelling type.	See	Wh / sqm / degree Celcius / hour
	I=1,,NUDT	comments	
UDWAC(I)	Share of urban dwellings with air conditioning, by dwelling	%	Relative to total number of urban dwellings of the respective
	type. I=1,,NUDT		type.
UACDW(I)	Specific cooling requirements by urban dwelling type.	kWh/dw/yr	
	I=1,,NUDT		
CKUDW	Specific energy consumption for cooking in urban	kWh/dw/yr	
	dwellings (in useful energy terms).		-
UDWHW	Share of urban dwellings with hot water facilities.	%	Relative to total number of urban dwellings.
UHWCAP	Specific energy consumption for water heating per person	kWh/pers./yr	
	in urban dwellings (useful energy).		
ELAPUDW	Specific electricity consumption (final energy) per urban	kWh/dw/yr	Refers to households in electrified urban localities (see
	dwelling for electric appliances (other end-uses than		variable ELPU).
	space and water neating, cooking and air conditioning).		
ELPU	Electricity penetration for appliances in urban households.	%	This variable can be interpreted as the fraction of total urban
			dwellings that are electrified (i.e. the electrification rate of
			urbari riouserioius).
			Continues

Table 4.1m List and definition of input variables of urban household (Continued)

ting,		ating	au	heat	only	the									ckup		ating	the		heat	only	the	the		
uel ligh		ice he	ation IC	luding	rovided	ation to							īt.		y a ba		ter he:	ation ir		luding	rovided	ation fo	gram as		
ossil fu		ic spa	beneu	s (excl	out is pr	penetra))))						gy inpu		met b		ric wa	penetr		s (excl	out is pr	penetra	Je proç		
rmea u s as: f		electr	sciricity	etration:	irect inp	h the							al ener		e to be		o elect	ectricity		etration:	irect inp	ile the	ed by th		
on-elect	jas etc.	mps to	I OI EIE	n pene	efore, d	rms, wr alculate							electric		vill have		mps to	n of ele		n pene	efore, d	rms, wł	alculate		
ds in no id to e	natural (eat pui	Iractior	gy for	0. Then	iergy to Js, is c	2						racted /		mand v		eat pu	fractio		gy for	0. Ther	lergy fo	els) is c		
ousehol PU) ar	s using r	of he	⊓) IS a narket.	of ener	st be 10	(n-1) er assil fue							ergy ext		the de		n of h	W) is a	narket.	of ener	st be 10	(n-1) er	ossil fue		
ers to h able EL	gerators	tributior	P.UH.SI ective r	sum	inm (sdi	ne tirst one (Fi	ainder.						rmal en		rest of	em.	tributior	P.UH.H	ective r	sum	ınm (sqi	he first	one (F	ainder.	
Refe	refri	C C C	лп) resp	The	μ	tor t last	rem						The		The	syst	Con	ЧH)	resp	The	mud	for t	last	rem	
dw/yr													ee(ient)											
kWh/a		%						%					ratio	comm	%		%								
urban (other	and air	neating						ctricity	Ĥ				sdwnd		and in	solar	neating	1							
gy) per liances	ooking :	space 1			EL)			at of ele	olds (U				c) heat	(HN).	H) dem	et with	water h				ЕL)				
al ener ric app	ating, co	s into s	ΞL	MB)	tional (E			/e to th	househ				(electrid	eholds	ng (S⊦	De De	is into		(F)	MB)	tional (E				
tion (fin in-electi	ater hea	jy form	1): fuels (7) mass (conven	s (HP) t (DH)	SS)	e, relativ	urban	Ê.	MB)		:OP) of	an hous	e heati	at can	gy form	H:	fuels (]	omass (conven	S (HP)	it (DH)	SS)	; (FF)
and no	and wa	s energ	ditional	dern bic	ctricity,	at pump Irict hea	t solar (uels use	(SH) ir	fuels (T	mass (I	(FF)	ance (C) in urbâ	of spac	JH) th	s enero	olds (U	ditional	dern bic	ctricity,	at pump	trict hea	t solar (sil tuels
fuel co ghting	space	variou	iouseno (1) Tra	(2) Mo((3) Ele	(4) Hea	(6) Sof	arious fu	heating	ditional	dern bio	sil fuels	berform	ng (SH	share c	olds (I	variou	househ	(1) Tra	(2) Moo	(3) Ele	(4) Hea	(5) Dist	(6) Sof	(7) Fos
fossil for lig	is than ning).	tion of	forms:					cy of va	space	(1) Trac	(2) Moc	(3) Fos	ent of p	te heati	mate s	nouseh ions.	tion of	urban	forms:						
Specific dwelling	end-use conditio	Penetra	Enerav	6				Efficien	use, for	Fuels: (Coeffici	for spac	Approxi	urban installat	Penetra	(HW) in	Energy						
>		H	ц Н	SH	SH	SH SH		H	SH	Ηű			SH		SH		N-	M≷	₹	МЧ	МЧ	≷	MH		
FLTUDV		FP.UH.S	LP.UH.S	PP.UH.	HP.UH.	SP.UH.	110.11	FE.UH.S	BE.UH.	FE.UH.S			PE.UH.		DS.UH.		FP.UH.	BP.UH.	LP.UH.F	PP.UH.	HP.UH.	SP.UH.I	FP.UH.		
ш		⊢ 2	≥ Ш	Т	\Box	ν'n	-	Ē	Σ	ш			Т		ш		F	\geq	ш	Т	Δ	S	ĹŢ,		

Continues			
	comment)	conditioning (AC) in urban households (UH).	
Thermal energy extracted / energy input.	ratio (see	Coefficient of performance (COP) of non-electric air	FFE.UH.AC
	comment)	conditioning (AC) in urban households (UH).	
Thermal energy extracted / electrical energy input.	ratio (see	Coefficient of performance (COP) of electric air	ELE.UH.AC
met with non-electric (fossil fuel) chillers [FFP.UH.AC].		households (UH) that can be met with electricity.	
The rest of the demand for air conditioning is assumed to be	%	Share of air conditioning (AC) demand of urban	ELP.UH.AC
system.		households (UH) that can be met with solar installations.	
The rest of the demand will have to be met by a backup	%	Approximate share of cooking (CK) demand in urban	FDS.UH.CK
		(3) Fossil fuels (FF)	
		(2) Modern biomass (MB)	
		Fuels: (1) Traditional fuels (TF)	FFE.UH.CK
		use, for cooking (CK) in urban households (UH):	MBE.UH.CK
	%	Efficiency of various fuels use, relative to that of electricity	TFE.UH.CK
		(5) Fossil fuels (FF)	
		(4) Soft solar (SS)	
		(3) Flactricity conventional (FL)	EED LIH CK
files) is celouleted by the noncream as the remainder		(2) Modern hiomace (MB)	SSPIIL CK
energy forms, while the penetration for the last one (Fossil		Energy forms: (1) Traditional fuels (TF)	ELP.UH.CK
Therefore, direct input is provided only for the first (n-1)		urban households (UH):	MBP.UH.CK
The sum of energy form penetrations must be 100.	%	Penetration of various energy forms into cooking (CK) in	TFP.UH.CK
		installations.	
system.		urban households (UH) that can be met with solar	
The rest of the demand will have to be met by a backup	%	Approximate share of water heating (HW) demand in	FDS.UH.HW
	comment)	for water heating (HW) in urban households (UH).	
Thermal energy extracted / electrical energy input.	ratio (see	Coefficient of performance (COP) of (electric) heat pumps	HPE.UH.HW
		(3) Fossil fuels (FF)	
		(2) Modern biomass (MB)	FFE.UH.HW
		Euels: (1) Traditional fuels (TF)	MBE.UH.HW
		use, for water heating (HW) in urban households (UH):	TFE.UH.HW
	%	Efficiency of various fuels use, relative to that of electricity	

Table 4.1m List and definition of input variables of urban household (Continued)

Table 4.1n List and Definition of Input Variables of Rural Households

RURAL HOUSE (see worksheet	E HOLDS: "US_HH_Rr−D" of MAED_D.xls)		
RDWSH	Fraction of rural dwellings in areas where space heating is required.	%	Relative to the total number of rural dwellings.
RDD	Degree-days for rural dwellings.	degree–day	The definition used here is: (a) based on Celcius degrees with a threshold of 18° C: (b) based on monthly average
			temperature; and (c) averaged over regions (weighted by rural population) which require space heating.
RDW(I)	Fraction of rural dwellings per type. I=1,,NRDT	%	Relative to the total number of rural dwellings situated in areas where space heating is required.
			The sum of these fractions must be 100. Therefore, direct input is provided only for the first (NRDT-1) dwelling types.
			while the share for the last type is calculated by the program as the remainder.
RDWS(I)	Average size of rural dwellings by type. I=1,,NRDT	sqm/dw	Measured in terms of floor area.
RAREAH(I)	Fraction of floor area that is actually heated in rural	%	Relative to the average dwelling size RDWS(I).
	dwellings, by dwelling type. I=1,,NRDT		
RK(I)	Specific heat loss rate by rural dwelling type.	See	Wh / sqm / degree Celcius / hour
	I=1,,NRUI	comment	
KUWAC(I)	Share of rural dwellings with air conditioning, by dwelling type. I=1NRDT	%	Relative to total number of rural dwellings of the respective type.
RACDW(I)	Specific cooling requirements by rural dwelling type.	kWh/dw/yr	-
CKRDW	Specific energy consumption for cooking in rural dwellings	kWh/dw/yr	
RDWHW	Share of rural dwellings with hot water facilities.	%	Relative to total number of rural dwellings.
RHWCAP	Specific energy consumption for water heating per person	kWh/pers./yr	
	in rural dwellings (useful energy).		
ELAPRDW	Specific electricity consumption (final energy) per rural	kWh/dw/yr	Refers to households in electrified rural localities (see
	aweiling for electric appliances (other end-uses than space and water heating, cooking and air conditioning).		variable ELPR).
			Continues

Table 4.1n List and definition of input variables of rural households (Continued)

Continues			
remainder.		(6) Soft solar (SS) (7) Fossil fuels (FF)	
last one (Fossil fuels) is calculated by the program as the		(5) District heat (DH)	FFP.RH.HW
for the first (n-1) energy forms, while the penetration for the		(4) Heat pumps (HP)	SSP.RH.HW
pumps) must be 100. Therefore, direct input is provided only		(3) Electricity, conventional (EL)	DHP.RH.HW
The sum of energy form penetrations (excluding heat		(2) Modern biomass (MB)	HPP.RH.HW
respective market.		Energy forms: (1) Traditional fuels (TF)	ELP.RH.HW
(HPP.RH.HW) is a fraction of electricity penetration in the		(HW) in rural households (RH):	MBP.RH.HW
Contribution of heat pumps to electric water heating	%	Penetration of various energy forms into water heating	TFP.RH.HW
system.		households (RH) that can be met with solar installations.	
The rest of the demand will have to be met by a backup	%	Approximate share of space heating (SH) demand in rural	FDS.RH.SH
	comment)	for space heating (SH) in rural households (RH).	
Thermal energy extracted / electrical energy input.	ratio (see	Coefficient of performance (COP) of (electric) heat pumps	HPE.RH.SH
		(2) Modern biomass (MB) (3) Fossil fuels (FF)	
		Fuels: (1) Traditional fuels (TF)	FFE.RH.SH
	2	Line for snare heating (SH) in rural households (RH).	MRF RH SH
	6	(7) FOSSII tuels (FF)	
remainder.		(6) Soft solar (SS)	
last one (Fossil fuels) is calculated by the program as the		(5) District heat (DH)	FFP.RH.SH
for the first (n-1) energy forms, while the penetration for the		(4) Heat pumps (HP)	SSP.RH.SH
pumps) must be 100. Therefore, direct input is provided only		(3) Electricity, conventional (EL)	DHP.RH.SH
The sum of energy form penetrations (excluding heat		(2) Modern biomass (MB)	HPP.RH.SH
respective market.		Energy forms: (1) Traditional fuels (TF)	ELP.RH.SH
(HPP.RH.SH) is a fraction of electricity penetration in the		(SH) in rural households (RH):	MBP.RH.SH
Contribution of heat pumps to electric space heating	%	Penetration of various energy forms into space heating	TFP.RH.SH
5		conditioning).	
refrigerators using natural gas etc.		end-uses than space and water heating, cooking and air	
variable ELPR) and to end-uses as: fossil fuel lighting,	•	dwelling for lighting and non-electric appliances (other	
Refers to households in non-electrified rural localities (see	kWh/dw/yr	Specific fossil fuel consumption (final energy) per rural	FFLTRDW
electrification rate of rural households)			
number of rural dwellings that are electrified (i.e. the		-	
This variable can be interpreted as the fraction of total	%	Electricity penetration for appliances in rural households.	ELPR

Table 4.1n List and Definition of Input Variables of Rural Households (continued)

	Efficiency of variatic fuele use relative to that of electricity	70	
	Lincency of various ruces use, relative to that of electricity	0/	
	use, ior water rieating (nyv) in rurar nousenous (nn). <i>Euels:</i> (1) Traditional fuels (TE)		
	(1) Modern biomase (MB)		
	(2) Fossil fuels (FF)		
HPE.RH.HW	Coefficient of performance (COP) of (electric) heat pumps	ratio (see	Thermal energy extracted / electrical energy input.
	for water heating (HW) in rural households (RH).	comment)	-
FDS.RH.HW	Approximate share of water heating (HW) demand in rural	%	The rest of the demand will have to be met by a backup
	households (RH) that can be met with solar installations.		system.
TFP.RH.CK	Penetration of various energy forms into cooking (CK) in	%	The sum of energy form penetrations must be 100.
MBP.RH.CK	rural households (RH):		Therefore, direct input is provided only for the first (n-1)
ELP.RH.CK	Energy forms: (1) Traditional fuels (TF)		energy forms, while the penetration for the last one (Fossil
SSP.RH.CK	(2) Modern biomass (MB)		fuels) is calculated by the program as the remainder.
FFP.RH. CK	(3) Electricity, conventional (EL)		•
	(4) Soft solar (SS)		
	(5) Fossil fuels (FF)		
TFE.RH.CK	Efficiency of various fuels use, relative to that of electricity	%	
MBE.RH.CK	use, for cooking (CK) in rural households (RH):		
FFE.RH.CK	Fuels: (1) Traditional fuels (TF)		
	(2) Modern biomass (MB)		
	(3) Fossil fuels (FF)		
FDS.RH.CK	Approximate share of cooking (CK) demand in rural	%	The rest of the demand will have to be met by a backup
	households (RH) that can be met with solar installations.		system.
ELP.RH.AC	Share of air conditioning (AC) demand of rural households	%	The rest of the demand for air conditioning is assumed to be
	(RH) that can be met with electricity.		met with non-electric (fossil fuel) chillers [FFP.RH.AC].
ELE.RH.AC	Coefficient of performance (COP) of electric air	ratio (see	Thermal energy extracted / electrical energy input.
	conditioning (AC) in rural households (RH).	comment)	
FFE.RH.AC	Coefficient of performance (COP) of non-electric air	ratio (see	Thermal energy extracted / energy input.
	conditioning (AC) in rural households (RH).	comment)	

Table 4.10 List and definition of input variables of service sector

SERVICE: (see worksheets "	US_SS-D" and "SS_Fac-D" in MAED_D.xls)		
PLSER AREAL	Share of Service sector in the total active labour force. Average floor area per employee in Service sector.	/ ubs %	
		employee	
ARSH	Share of Service sector floor area requiring space heating.	%	Relative to total floor area of Service sector.
AREAH	Share of the Service sector floor area requiring space	%	Relative to Service sector floor area requiring space heating.
SSHR	Specific space heat requirements of Service sector buildings (useful energy).	kWh/sqm/yr	
AREAAC	Share of air-conditioned Service sector floor area.	%	Relative to total floor area of Service sector.
SACR	Specific cooling requirements in the Service sector (useful energy).	kWh/sqm/yr	
EI.MF.SE(I)	Energy intensity of motor fuel use in subsector I of Service sector (final energy). I=1,,NSSER	kwh/MU	
EI.ELS.SE(I)	Energy intensity of electricity specific uses in subsector I of Service sector (final energy). I=1,,NSSER	kwh/MU	
EI.OTU.SE(I)	Energy intensity of other thermal uses (except space heating) in subsector I of Service sector (useful energy). I=1,,NSSER	NM/MW	

Table 4.10 List and definition of input variables of service sector (Continued)

TFP.SER.SH MBP.SER.SH	Penetration of various energy forms into space heating (SH) in Service sector:	%	Contribution of heat pumps to electric space heating (HPP.SER.SH) is a fraction of electricity penetration in the
ELP.SER.SH	Energy forms: (1) Traditional fuels (TF)		respective market.
HPP.SER.SH	(2) Modern biomass (MB)		The sum of energy form penetrations (excluding heat
DHP.SER.SH	(3) Electricity, conventional (EL)		pumps) must be 100. Therefore, direct input is provided only
SSP.SER.SH	(4) Heat pumps (HP)		for the first (n-1) energy forms, while the penetration for the
FFP.SER.SH	(5) District heat (DH)		last one (Fossil fuels) is calculated by the program as the
	(6) Soft solar (SS)		remainder.
	(7) Fossil fuels (FF)		
TFP.SER.OTU	Penetration of various energy forms into other thermal	%	The sum of energy form penetrations must be 100.
MBP.SER.OTU	uses (OTU) in Service sector (except space heating):		Therefore, direct input is provided only for the first (n-1)
ELP.SER.OTU	Energy forms: (1) Traditional fuels (TF)		energy forms, while the penetration for the last one (Fossil
	(2) Modern biomass (MB)		tuels) is calculated by the program as the remainder.
SOL SER. OLO			
FFP.SER.OTU	(4) District heat (DH)		
	(5) Sont solar (SS) (6) Fossil fuels (FF)		
TFE.SER.TU	Efficiency of various fuels use, relative to that of	%	Thermal uses (TU) include: space heating (SH) and other
MBE.SER.TU	electricity use, for thermal uses (TU) in Service sector:		thermal uses (OTU).
FFE.SER.TU	Fuels: (1) Traditional fuels (TF)		
	(2) Modern biomass (MB)		
HPF SFR SH	(3) FOSSII TUEIS (FF) Coefficient of performance (COP) of (electric) heat	ratio (see	Thermal energy extracted / electrical energy input
	bumbs in space heating (SH) in Service sector	comment)	
PLB	Share of low-rise buildings in the total Service sector	%	Generally, up to 3 stores high buildings are considered as
	floor area.		low-rise buildings.
FDS.SER.TU	Approximate share of thermal uses (TU) in the Service	%	Thermal uses (TU) include: space heating (SH) and other
	sector that can be met by solar installations.		thermal uses (OTU).
			The rest of the demand will have to be met by a backup
			system.
ELP.SER.AC	Share of air conditioning (AC) that can be met with	%	The rest of the demand for air conditioning is assumed to be
ELE SER AC	Great I of the sector manual (COD) of electric air	ratio (see	Thermal energy extracted / electrical energy innut
			וווכוווומו כווכו אל כאוומטוכט / כוככוווכמו כווכו אל וווףמו.
	conditioning in the Service sector.	comment)	
FFE.SER.AC	Coefficient of performance (COP) of non-electric air	ratio (see	Thermal energy extracted / energy input.
		conninenu)	

Table 4.2a List and Definition of Derived Variables of Demography

(Note: Variables which are used for calculations in Section 5 but not shown in the EXCEL worksheet tables of MAED_D, have been underlined for easy identification.)

VARIABLE	UNIT	EXPLANATION
INCR	years	Time interval between the current and the last previous model years.
DEMOGRAPH	[Y:	
(see worksheet "E	Demogr-D" of M	AED_D.xls)
UHH	10 ⁶ dw	Number of urban households.
PRUR	%	Share of rural population.
RHH	10 ⁶ dw	Number of rural households.
ALF	10 ⁶ persons	Active labour force.
POLC	10 ⁶ persons	Total population living in large cities (where mass transportation is feasible).

Table 4.2b List and Definition of GDP Formation

GDP FORMATION:				
(see worksheet GDP-D of MAED_D.xls)				
YAGR	10 [°] MU	GDP contribution, Agriculture sector.		
YAG(I)	10 ⁹ MU	GDP contribution, Subsector I of Agriculture sector. $I = 1$		
YCON	10 ⁹ MU	GDP contribution, Construction sector.		
YCO(I)	10 ⁹ MU	GDP contribution, subsector I of Construction sector. $I = 1$		
YMIN	10 ⁹ MU	GDP contribution, Mining sector.		
YMI(I)	10 ⁹ MU	GDP contribution, Subsector I of Mining sector. I =		
YMAN	10 ⁹ MU	GDP contribution, Manufacturing sector.		
YMA(I)	10 ⁹ MU	GDP contribution, subsector I of Manufacturing sector. I =		
YSER	10 ⁹ MU	GDP contribution, Service sector.		
YSE(I)	10 ⁹ MU	GDP contribution, subsector I of Service sector.		
YEN	10 ⁹ MU	GDP contribution, Energy sector (electricity/gas/water).		
Y.CAP	MU/cap	Per capita total GDP.		
YAGR.CAP	MU/cap	Per capita GDP contribution, Agriculture sector.		
YCON.CAP	MU/cap	Per capita GDP contribution, Construction sector.		
YMIN.CAP	MU/cap	Per capita GDP contribution, Mining sector.		
YMAN.CAP	MU/cap	Per capita GDP contribution, Manufacturing sector.		
YSER.CAP	MU/cap	Per capita GDP contribution, Service sector.		

Table 4.2b List and definition of GDP formation (Continued)

YEN.CAP	MU/cap	Per capita GDP contribution, Energy sector.
YAGR.GR	%	GDP growth rate, Agriculture sector.
YAG.GR(I)	%	GDP growth rate, subsector I of Agriculture sector.
YCON.GR	%	GDP growth rate, Construction sector.
YCO.GR(I)	%	GDP growth rate, subsector I of Construction sector.
YMIN.GR	%	GDP growth rate, Mining sector.
YMI.GR(I)	%	GDP growth rate, Subsector I of Mining sector. I=1,,NSMIN
YMAN.GR	%	GDP growth rate, Manufacturing sector.
YMA.GR(I)	%	GDP growth rate, Subsector I of Manufacturing sector.
YSER.GR	%	GDP growth rate, Service sector.
YSE.GR(I)	%	GDP growth rate, subsector I of Service sector. I=1,,NSSER
YEN.GR	%	GDP growth rate, Energy sector.
Y.GR	%	GDP growth rate.
Y.CAP.GR	%	Per capita GDP growth rate.
	1	

INDUSTRY:			
ENERGY INTENSITIES IN INDUSTRY (AGRICULTURE, CONSTRUCTION, MINING AND			
(see worksheet "EnInt-D" of MAED_D.xls)			
EI.MF.AGR	kWh/MU	Specific motor fuel consumption per monetary unit of value added (energy intensity) of Agriculture sector.	
EI.MF.CON	kWh/MU	Specific motor fuel consumption per monetary unit of value added (energy intensity) of Construction sector.	
EI.MF.MIN	kWh/MU	Specific motor fuel consumption per monetary unit of value added (energy intensity) of Mining sector.	
EI.MF.MAN	kWh/MU	Specific motor fuel consumption per monetary unit of value added (energy intensity) of Manufacturing sector.	
EI.ELS.AGR	kWh/MU	Specific electricity consumption (for specific uses) per monetary unit of value added (energy intensity) of Agriculture sector.	
EI.ELS.CON	kWh/MU	Specific electricity consumption (for specific uses) per monetary unit of value added (energy intensity) of Construction sector.	
EI.ELS.MIN	kWh/MU	Specific electricity consumption (for specific uses) per monetary unit of value added (energy intensity) of Mining sector.	
EI.ELS.MAN	kWh/MU	Specific electricity consumption (for specific uses) per monetary unit of value added (energy intensity) of Manufacturing sector.	
EI.TU.AGR	kWh/MU	Specific useful energy demand for thermal uses per monetary unit of value added (energy intensity) of Agriculture sector.	
EI.TU.CON	kWh/MU	Specific useful energy demand for thermal uses per monetary unit of value added (energy intensity) of Construction sector.	
EI.TU.MIN	kWh/MU	Specific useful energy demand for thermal uses per monetary unit of value added (energy intensity) of Mining sector.	
EI.TU.MAN	kWh/MU	Specific useful energy demand for thermal uses per monetary unit of value added (energy intensity) of Manufacturing sector.	

Table 4.2c List and definition of derived variables of energy intensities in industry

Table 4.2d List and definition of derived variables of useful energy demand in industry (agriculture, construction, mining and manufacturing)

USEFUL ENERGY DEMAND IN INDUSTRY (AGRICULTURE, CONSTRUCTION, MINING AND		
MANUFACTURI	NG):	
	USENE-D OT M	
US.MF.AGK	GWa	Useful energy demand for motor fuels, Agriculture sector.
US.MF.AG(I)	GWa	Useful energy demand for motor fuels, subsector I of Agriculture sector. I=1,,NSAGR
US.MF.CON	GWa	Useful energy demand for motor fuels, Construction sector.
US.MF.CO(I)	GWa	Useful energy demand for motor fuels, Subsector I of Construction sector. I=1,,NSCON
US.MF.MIN	GWa	Useful energy demand for motor fuels, Mining sector.
US.MF.MI(I)	GWa	Useful energy demand for motor fuels, subsector I of Mining sector. I=1,,NSMIN
US.MF.MAN	GWa	Useful energy demand for motor fuels, Manufacturing sector.
US.MF.MA(I)	GWa	Useful energy demand for motor fuels, subsector I of Manufacturing sector. I=1,,NSMAN
US.MF.IND	GWa	Useful energy demand for motor fuels, Industry aggregated sector.
US.ELS.AGR	GWa	Useful energy demand for electricity (specific uses), Agriculture sector.
US.ELS.AG(I)	GWa	Useful energy demand for electricity (specific uses), subsector I of Agriculture sector. I=1,,NSAGR
US.ELS.CON	GWa	Useful energy demand for electricity (specific uses), Construction sector.
ÜS.ELS.CO(I)	GWa	Useful energy demand for electricity (specific uses), subsector I of Construction sector. I=1,,NSCON
US.ELS.MIN	GWa	Useful energy demand for electricity (specific uses), Mining sector.
US.ELS.MI(I)	GWa	Useful energy demand for electricity (specific uses), subsector I of Mining sector. I=1,,NSMIN
US.ELS.MAN	GWa	Useful energy demand for electricity (specific uses), Manufacturing sector.
US.ELS.MA(I)	GWa	Useful energy demand for electricity (specific uses), subsector I of Manufacturing sector. $I=1,NSMAN$
US.ELS.IND	GWa	Useful energy demand for electricity (specific uses), Industry aggregated sector.
US.TU.AGR	GWa	Useful energy demand for thermal uses, Agriculture sector.
US.TU.AG(I)	GWa	Useful energy demand for thermal uses, subsector I of Agriculture sector. I=1,,NSAGR
US.TU.CON	GWa	Useful energy demand for thermal uses, Construction sector.
US.TU.CO(I)	GWa	Useful energy demand for thermal uses, subsector I of Construction sector. I=1,,NSCON

USEFUL ENER	USEFUL ENERGY DEMAND IN INDUSTRY (AGRICULTURE, CONSTRUCTION, MINING AND			
MANUFACTURING):				
(see worksheet "UsEne-D" of MAED_D.xls)				
US.TU.MIN	GWa	Useful energy demand for thermal uses, Mining sector.		
US.TU.MI(I)	GWa	Useful energy demand for thermal uses, subsector I of Mining sector. I=1,,NSMIN		
US.TU.ACM	GWa	Useful energy demand for thermal uses, Agriculture + Construction + Mining sectors.		
US.TU.MAN	GWa	Useful energy demand for thermal uses, Manufacturing sector.		
US.TU.MA(I)	GWa	Useful energy demand for thermal uses, subsector I of Manufacturing sector. I=1,,NSMAN		
US.TU.IND	GWa	Useful energy demand for thermal uses, Industry aggregated sector.		

Table 4.2e List and definition of derived variables of useful and final energy demand

PENETRATION OF ENERGY CARRIERS INTO USEFUL THERMAL ENERGY OF AGRICULTURE, CONSTRUCTION AND MINING (ACM):

(see Table 5-4 in worksheet "ACMFac-D" of MAED_D.xls) (They are not used in the new version of the program. They can be removed!)

TFPACM	%	Weighted average penetration of traditional fuels into the market of useful thermal energy demand of (Agriculture + Construction +		
MBPACM	%	Weighted average penetration of modern biomass into the market		
ELPACM	%	Weighted average penetration of electricity into the market of		
		useful thermal energy demand of (Agriculture + Construction +		
SSPACM	%	Weighted average penetration of solar systems into the market of useful thermal energy demand of (Agriculture + Construction +		
FFPACM	%	Weighted average penetration of fossil fuels into the market of		
		useful thermal energy demand of (Agriculture + Construction +		
FINAL ENERGY DEMAND IN AGRICULTURE, CONSTRUCTION AND MINING:				
(see worksneet	FIN_ACM® OF N	1AED_D.xis) 		
TFAGR	GWa	Traditional fuel demand, Agriculture sector.		
MBAGR	GWa	Modern biomass demand, Agriculture sector.		
ELHAGR	GWa	Electricity demand for thermal uses, Agriculture sector.		
ELAGR	GWa	Total electricity demand, Agriculture sector.		
SSAGR	GWa	Useful thermal energy demand replaced by soft solar systems,		
FFAGR	GWa	Fossil fuel demand, Agriculture sector.		
MFAGR	GWa	Motor fuel demand, Agriculture sector.		
FINAGR	GWa	Final energy demand, Agriculture sector.		
TFAGR.S	%	Share of traditional fuels in final energy demand, Agriculture		
MBAGR.S	%	Share of modern biomass in final energy demand, Agriculture		
ELAGR.S	%	Sector. Share of electricity in final energy demand, Agriculture sector.		
SSAGR.S	%	Share of soft solar in final energy demand, Agriculture sector.		
FFAGR.S	%	Share of fossil fuels in final energy demand, Agriculture sector.		
MFAGR.S	%	Share of motor fuels in final energy demand, Agriculture sector.		
EI.TF.AGR	kWh/MU	Traditional fuel demand per value added (energy intensity),		
EI.MB.AGR	kWh/MU	Modern biomass demand per value added (energy intensity),		
EI.EL.AGR	kWh/MU	Electricity demand per value added (energy intensity), Agriculture		
EI.SS.AGR	kWh/MU	Soft solar demand per value added (energy intensity), Agriculture		
EI.FF.AGR	kWh/MU	Fossil fuel demand per value added (energy intensity), Agriculture sector.		
1	1			

Table 4.2e List and definition of derived variables of useful and final energy demand (Continued)

EI.F.AGR	kWh/MU	Motor fuel demand per value added (energy intensity), Agriculture
EI.FIN.AGR	kWh/MU	Final energy demand per value added (energy intensity), Agriculture sector.
TFCON	GWa	Traditional fuel demand, Construction sector.
MBCON	GWa	Modern biomass demand, Construction sector.
ELHCON	GWa	Electricity demand for thermal uses, Construction sector.
ELCON	GWa	Electricity demand, Construction sector.
SSCON	GWa	Useful thermal energy demand replaced by soft solar systems, Construction sector.
FFCON	GWa	Fossil fuel demand, Construction sector.
MFCON	GWa	Motor fuel demand, Construction sector.
FINCON	GWa	Final energy demand, Construction sector.
TFCON.S	%	Share of traditional fuels in final energy demand, Construction sector.
MBCON.S	%	Share of modern biomass in final energy demand, Construction sector.
ELCON.S	%	Share of electricity in final energy demand, Construction sector.
SSCON.S	%	Share of soft solar in final energy demand, Construction
FFCON.S	%	sector. Share of fossil fuels in final energy demand, Construction sector.
MFCON.S	%	Share of motor fuels in final energy demand, Construction sector.
EI.TF.CON	kWh/MU	Traditional fuel demand per value added (energy intensity), Construction sector.
EI.MB.CON	kWh/MU	Modern biomass demand per value added (energy intensity), Construction sector.
EI.EL.CON	kWh/MU	Electricity demand per value added (energy intensity), Construction sector.
EI.SS.CON	kWh/MU	Soft solar demand per value added (energy intensity), Construction sector.
EI.FF.CON	kWh/MU	Fossil fuel demand per value added (energy intensity), Construction sector.
EI.MF.CON	kWh/MU	Motor fuel demand per value added (energy intensity), Construction sector.
EI.FIN.CON	kWh/MU	Final energy demand per value added (energy intensity), Construction sector.
TFMIN	GWa	Traditional fuel demand, Mining sector.
MBMIN	GWa	Modern biomass demand, Mining sector.

Table 4.2e List and definition of derived variables of useful and final energy demand (Continued)

ELHMIN	GWa	Electricity demand for thermal uses, Mining sector.
ELMIN	GWa	Electricity demand, Mining sector.
SSMIN	GWa	Useful thermal energy demand replaced by soft solar
FFMIN	GWa	Fossil fuel demand, Mining sector.
MFMIN	GWa	Motor fuel demand, Mining sector.
FINMIN	GWa	Final energy demand, Mining sector.
TFMIN.S	%	Share of traditional fuels in final energy demand, Mining sector.
MBMIN.S	%	Share of modern biomass in final energy demand, Mining sector.
ELMIN.S	%	Share of electricity in final energy demand, Mining sector.
SSMIN.S	%	Share of soft solar in final energy demand, Mining sector.
FFMIN.S	%	Share of fossil fuels in final energy demand, Mining sector.
MFMIN.S	%	Share of motor fuels in final energy demand, Mining sector.
EI.TF.MIN	kWh/MU	Traditional fuel demand per value added (energy intensity), Mining sector.
EI.MB.MIN	kWh/MU	Modern biomass demand per value added (energy intensity), Mining sector.
EI.EL.MIN	kWh/MU	Electricity demand per value added (energy intensity), Mining sector.
EI.SS.MIN	kWh/MU	Soft solar demand per value added (energy intensity), Mining sector.
EI.FF.MIN	kWh/MU	Fossil fuel demand per value added (energy intensity), Mining sector.
EI.MF.MIN	kWh/MU	Motor fuel demand per value added (energy intensity), Mining sector.
EI.FIN.MIN	kWh/MU	Final energy demand per value added (energy intensity), Mining sector.
TFACM	GWa	Traditional fuel demand, Agriculture + Construction + Mining sectors.
MBACM	GWa	Modern biomass demand, Agriculture + Construction + Mining sectors.
ELSACM	GWa	Electricity demand for specific uses, Agriculture + Construction + Mining sectors.

Table 4.2e List and definition of derived variables of useful and final energy demand (Continued)

ELHACM	GWa	Electricity demand for thermal uses, Agriculture +
ELACM	GWa	Total electricity demand, Agriculture + Construction + Mining sectors.
SSACM	GWa	Useful thermal energy demand replaced by soft solar systems, A griculture + Construction + Mining sectors
FFACM	GWa	Fossil fuel demand, Agriculture + Construction + Mining sectors.
MFACM	GWa	Motor fuel demand, Agriculture + Construction + Mining sectors.
FINACM	GWa	Final energy demand, Agriculture + Construction + Mining sectors.
TFACM.S	%	Share of traditional fuels in final energy demand, Agriculture + Construction + Mining sectors.
MBACM.S	%	Share of modern biomass in final energy demand, Agriculture + Construction + Mining sectors.
ELACM.S	%	Share of electricity in final energy demand, Agriculture + Construction + Mining sectors.
SSACM.S	%	Share of soft solar in final energy demand, Agriculture + Construction + Mining sectors
FFACM.S	%	Share of fossil fuels in final energy demand, Agriculture + Construction + Mining sectors.
MFACM.S	%	Share of motor fuels in final energy demand, Agriculture + Construction + Mining sectors.
EI.TF.ACM	kWh/MU	Traditional fuel demand per value added (energy intensity), Agriculture + Construction + Mining sectors.
EI.MB.ACM	kWh/MU	Modern biomass demand per value added (energy intensity), Agriculture + Construction + Mining sectors.
EI.EL.ACM	kWh/MU	Electricity demand per value added (energy intensity), Agriculture + Construction + Mining sectors.
EI.SS.ACM	kWh/MU	Soft solar demand per value added (energy intensity), Agriculture + Construction + Mining sectors.
EI.FF.ACM	kWh/MU	Fossil fuel demand per value added (energy intensity), Agriculture + Construction + Mining sectors.
EI.MF.ACM	kWh/MU	Motor fuel demand per value added (energy intensity), Agriculture + Construction + Mining sectors.
EI.FIN.ACM	kWh/MU	Final energy demand per value added (energy intensity), Agriculture + Construction + Mining sectors.

Table 4.2f List and definition of derived variables of useful thermal energy demand in manufacturing

USEFUL THERMAL ENERGY DEMAND IN MANUFACTURING:					
(see worksheet "ManFac1-D" of MAED_D.xls)					
USMAN(I,J)	GWa	Useful thermal energy demand of subsector I of Manufacturing sector for demand category J.			
		I=1,,NSMAN;			
		Demand categories: (J = 1) Steam generation (STM)			
		(J = 2) Furnace/direct heat (FUR)			
		(J = 3) Space/water heating (SWH)			
USMA(I)	GWa	Useful thermal energy demand of subsector I of Manufacturing sector. I=1,,NSMAN			
USMAN(1)	GWa	Useful thermal energy demand of Manufacturing sector for Steam generation (STM).			
US.STM.MAN					
USMAN(2)	GWa	Useful thermal energy demand of Manufacturing sector for			
US.FUR.MAN					
USMAN(3)	GWa	Useful thermal energy demand of Manufacturing sector for			
US.SWH.MAN		Space/water neating (Swiri).			
USMAN(4)	GWa	Total useful thermal energy demand of Manufacturing sector.			
PENETRATIC	DNS AND EF	FICIENCIES FOR USEFUL THERMAL ENERGY			
DEMAND OF MANUFACTURING (see worksheet "ManFac2" of MAED_D.xls)					
PMEL(J)	%	Share of electricity (conventional) in USMAN(J).			
		Demand categories: (J = 1) Steam generation (STM)			
		(J = 2) Furnace/direct heat (FUR)			
		(J = 3) Space/water heating (SWH)			
PMEL(4)	%	Weighted average penetration of electricity (conventional) into the market of useful thermal energy demand of Manufacturing industries.			
PMHP(J)	%	Share of electricity (heat pump) in USMAN(J).			
		Demand categories: (J = 1) Steam generation (STM)			
		(J = 2) Furnace/direct heat (FUR)			
		(J = 3) Space/water heating (SWH)			

Table 4.2f List and definition of derived variables of useful thermal energy demand in manufacturing (Continued)

PMHP(4)	%	Weighted average penetration of electricity (heat pump) into the
		market of useful thermal energy demand of Manufacturing industries.
PMDH(J)	%	Share of district heat in USMAN(J).
		Demand categories: (J = 1) Steam generation (STM)
		(J = 2) Furnace/direct heat (FUR)
		(J = 3) Space/water heating (SWH)
PMDH(4)	%	Weighted average penetration of district heat into the market of useful thermal energy demand of Manufacturing industries.
PMSS(J)	%	Share of solar systems in USMAN(J).
		Demand categories: (J = 1) Steam generation (STM)
		(J = 2) Furnace/direct heat (FUR)
		(J = 3) Space/water heating (SWH)
PMSS(4)	%	Weighted average penetration of solar systems into the market of useful thermal energy demand of Manufacturing industries.
PMCG(J)	%	Share of on-site cogeneration in USMAN(J).
		Demand categories: (J = 1) Steam generation (STM)
		(J = 2) Furnace/direct heat (FUR)
		(J = 3) Space/water heating (SWH)
PMCG(4)	%	Weighted average penetration of on-site cogeneration into the market of useful thermal energy demand of Manufacturing industries.
PMTF(J)	%	Share of traditional fuels in USMAN(J).
		Demand categories: (J = 1) Steam generation (STM)
		(J = 2) Furnace/direct heat (FUR)
		(J = 3) Space/water heating (SWH)
PMTF(4)	%	Weighted average penetration of traditional fuels into the market of useful thermal energy demand of Manufacturing industries.
PMMB(J)	%	Share of modern biomass in USMAN(J).
		Demand categories: (J = 1) Steam generation (STM)
		(J = 2) Furnace/direct heat (FUR)
		(J = 3) Space/water heating (SWH)

Table 4.2f List and definition of derived variables of useful thermal energy demand in manufacturing (Continued)

PMMR(A)	0/_	Weighted average penetration of modern biomass into the market
	70	of useful thermal energy demand of Manufacturing industries.
PMFF(J)	%	Share of fossil fuels in USMAN(J).
		Demand categories: (J = 1) Steam generation (STM)
		(J = 2) Furnace/direct heat (FUR)
		(J = 3) Space/water heating (SWH)
PMFF(4)	%	Weighted average penetration of fossil fuels into the market of useful thermal energy demand of Manufacturing industries.
FFEMAN(4)	%	Average efficiency of fossil fuel use in thermal processes in Manufacturing sector, relative to the efficiency of electricity.
TFEMAN(4)	%	Average efficiency of traditional fuel use in thermal processes in Manufacturing sector, relative to the efficiency of electricity.
MBEMAN(4)	%	Average efficiency of modern biomass use in thermal processes in Manufacturing sector, relative to the efficiency of electricity.
PSTEEL	10 ⁶ tons	Total steel production.
PFEED	10 ⁶ tons	Total feedstock consumption (i.e. use of energy sources as raw materials)
TFMAN	GWa	Thermal use of traditional fuels in Manufacturing
-------------	--------	--
COGSTH	GWa	Useful thermal energy demand of Manufacturing that is
0000111	0,1,4	provided with cogeneration of electricity.
MBMAN	GWa	Thermal use of modern biomass in Manufacturing.
ELHMAN	GWa	Thermal use of electricity in Manufacturing.
ELSMAN	GWa	Electricity demand for specific uses in Manufacturing.
ELMAN	GWa	Electricity demand in Manufacturing.
DHMAN	GWa	District heat demand in Manufacturing.
SSMAN	GWa	Useful thermal energy demand replaced by soft solar
FFMAN	GWa	Systems in Manufacturing. Thermal use of fossil fuels in Manufacturing.
MFMAN	GWa	Motor fuel demand in Manufacturing.
COKE	GWa	Coke demand for pig iron production.
FEED	GWa	Total feedstock consumption, expressed in internal energy units
FINMAN	GWa	Final energy demand in Manufacturing.
TFMAN.S	%	Share of traditional fuels in final energy, Manufacturing.
MBMAN.S	%	Share of modern biomass in final energy, Manufacturing.
ELMAN.S	%	Share of electricity in final energy, Manufacturing.
DHMAN.S	%	Share of district heat in final energy, Manufacturing.
SOLMAN.S	%	Share of soft solar in final energy, Manufacturing.
FFMAN.S	%	Share of fossil fuels in final energy, Manufacturing.
MFMAN.S	%	Share of motor fuels in final energy, Manufacturing.
COKEMAN.S	%	Share of coke in final energy, Manufacturing.
FEEDMAN.S	%	Share of feedstock in final energy, Manufacturing.
EI.TF.MAN	kWh/MU	Traditional fuel demand per value added, Manufacturing.
EI.MB.MAN	kWh/MU	Modern biomass demand per value added, Manufacturing.
EI.EL.MAN	kWh/MU	Electricity demand per value added, Manufacturing.
EI.DH.MAN	kWh/MU	District heat demand per value added, Manufacturing.
EI.SS.MAN	kWh/MU	Soft solar demand per value added, Manufacturing.
EI.FF.MAN	kWh/MU	Fossil fuel demand per value added, Manufacturing.
EI.MF.MAN	kWh/MU	Motor fuel demand per value added, Manufacturing.
EI.COKE.MAN	kWh/MU	Coke demand per value added, Manufacturing.
EI.FEED.MAN	kWh/MU	Feedstock demand per value added, Manufacturing.
EI.FIN.MAN	kWh/MU	Final energy demand per value added, Manufacturing.

Table 4.2g List and definition of derived variables of final energy demand in manufacturing

Table 4.2h List and definition of derived variables of final energy demand in industry (Manufacturing + ACM)

FINAL ENERGY DEMAND IN INDUSTRY (MANUFACTURING + ACM): (see Tables 9-4 to 9-6 in worksheet "FIN_Ind-D" of MAED_D.xls)		
TFIND	GWa	Thermal use of traditional fuels in Industry.
MBIND	GWa	Thermal use of modern biomass in Industry.
ELSIND	GWa	Electricity demand for specific uses, Industry.
ELHIND	GWa	Electricity demand for thermal uses, Industry.
ELIND	GWa	Electricity demand in Industry.
DHIND	GWa	District heat demand in Industry.
SSIND	GWa	Useful thermal energy demand replaced by soft solar systems in Industry.
FFIND	GWa	Thermal use of fossil fuels in Industry.
MFIND	GWa	Motor fuel demand in Industry.
FININD	GWa	Final energy demand in Industry.
TFIND.S	%	Share of traditional fuels in final energy, Industry.
MBIND.S	%	Share of modern biomass in final energy, Industry.
ELIND.S	%	Share of electricity in final energy, Industry.
DHIND.S	%	Share of district heat in final energy, Industry.
SSIND.S	%	Share of soft solar in final energy, Industry.
FFIND.S	%	Share of fossil fuels in final energy, Industry.
MFIND.S	%	Share of motor fuels in final energy, Industry.
COKEIND.S	%	Share of coke in final energy, Industry.
FEEDIND.S	%	Share of feedstock in final energy, Industry.
EI.TF.IND	kWh/MU	Traditional fuel demand per value added, Industry.
EI.MB.IND	kWh/MU	Modern biomass demand per value added, Industry.
EI.EL.IND	kWh/MU	Electricity demand per value added, Industry.
EI.DH.IND	kWh/MU	District heat demand per value added, Industry.
EI.SS.IND	kWh/MU	Soft solar demand per value added, Industry.
EI.FF.IND	kWh/MU	Fossil fuel demand per value added, Industry.
EI.MF.IND	kWh/MU	Motor fuel demand per value added, Industry.
EI.COKE.IND	kWh/MU	Coke demand per value added, Industry.
EI.FEED.IND	kWh/MU	Feedstock demand per value added, Industry.
EI.FIN.IND	kWh/MU	Final energy demand per value added, Industry.

Table 4.2i List and definition of derived variables of	freight	transportation
--	---------	----------------

TRANSPORTATION:		
FREIGHT TRANSPORTATION: (see worksheet "FrTrp-D" of MAED_D.xls)		
TKFT	10 [°] tkm	Total ton-kilometers for freight transportation (domestic).
TKFTM(I)	10 ⁹ tkm	Ton-kilometers by freight transportation mode. I=1,,NMFT
FTMEI(I)	kWh/100tkm	Energy intensity of freight transportation mode I. I=1,,NMFT
ECFTM(I)	GWa	Energy consumption of freight transportation mode I. I=1,,NMFT
TELFT	GWa	Total electricity consumption of freight transportation.
TSCFT	GWa	Total steam coal consumption of freight transportation.
TDIFT	GWa	Total diesel oil consumption of freight transportation.
TGAFT	GWa	Total gasoline consumption of freight transportation.
TF5FT	GWa	Total consumption of fuel number 5 in freight transportation.
TF6FT	GWa	Total consumption of fuel number 6 in freight transportation.
TF7FT	GWa	Total consumption of fuel number 7 in freight transportation.
TF8FT	GWa	Total consumption of fuel number 8 in freight transportation.
ECFTF(I)	GWa	Energy consumption in freight transportation by fuel type I. I=1,,NTF
TMFFT	GWa	Total motor fuel consumption for freight transportation.
TENFT	GWa	Total energy consumption for freight transportation.

Table 4.2j List and definition of derived variables of intracity (urban) passenger transportation

INTRACITY (URBAN) PASSENGER TRANSPORTATION:		
(see worksheet "PassIntra-D" of MAED_D.xls)		
PKU	10 ⁹ 9 pkm	Total passenger-kilometers, intracity (urban) traffic.
	4.09.0	
PKUTM(I)	10° tkm	Passenger-kilometers by urban transportation mode.
		= 1,,NMU
UTMEI(I)	kWh/pkm	Energy intensity of urban transportation mode I.
		I=1,,NMU I
ECUTM(I)	GWa	Energy consumption of urban transportation mode I.
()		I=1,,NMUT
тенит	CIMA	Total electricity consumption, urban percenter traffic
TELUT	Gwa	rotal electricity consumption, urban passenger trainc.
TDIUT	GWa	Total diesel oil consumption, urban passenger traffic.
TOALIT	CIMA	Total gasoling consumption, when personger traffic
IGAUI	Gwa	rotal gasoline consumption, urban passenger tranic.
TF5UT	GWa	Total consumption of fuel number 5, urban passenger traffic.
TEGUT	GWa	Total consumption of fuel number 6 urban passenger traffic
11 001	onu	
TF7UT	GWa	Total consumption of fuel number 7, urban passenger traffic.
TERUT	GWa	Total consumption of fuel number 8 urban passenger traffic
11001	onu	
ECUTF(I)	GWa	Energy consumption in urban transportation by fuel type I.
		I=1,,NIF
TMFUT	GWa	Total motor fuel consumption, urban passenger traffic.
TENUT	004	
IENUI	Gwa	i otal energy consumption, urban passenger traffic.

Table 4.2k List and definition of derived variables of intercity passenger transportation

INTERCITY PASSENGER TRANSPORTATION:			
	assinter-D or IV	IAED_D.XIS)	
PKI	10° ркт	i otal passenger-kilometers, intercity traffic.	
PKIC	10 ⁹ pkm	Passenger-kilometers by car, intercity traffic.	
PKIP	10 ⁹ pkm	Passenger-kilometers by public transportation, intercity traffic.	
PKICT(I)	10 ⁹ pkm	Passenger-kilometers by car type I, intercity traffic. I=1,,NCTIT	
PKIPM(I)	10 ⁹ pkm	Passenger-kilometers by public transportation mode I, intercity traffic. I=1,,(NMIT-NCTIT)	
ITMEI(I)	kWh/pkm	Energy intensity of intercity transportation mode I. I=1,,NMIT	
ECITM(I)	GWa	Energy consumption of intercity transportation mode I. I=1,,NMIT	
TELIT	GWa	Total electricity consumption, intercity passenger transportation.	
TSCIT	GWa	Total steam coal consumption, intercity passenger transportation.	
TDIIT	GWa	Total diesel oil consumption, intercity passenger transportation.	
TGAIT	GWa	Total gasoline consumption, intercity passenger transportation.	
TF5IT	GWa	Total consumption of fuel number 5, intercity passenger transportation.	
TF6IT	GWa	Total consumption of fuel number 6, intercity passenger transportation.	
TF7IT	GWa	Total consumption of fuel number 7, intercity passenger transportation.	
TF8IT	GWa	Total consumption of fuel number 8, intercity passenger transportation.	
ECITF(I)	GWa	Energy consumption in intercity transportation by fuel type I. I=1,,NFT	
TMFIT	GWa	Total motor fuel consumption, intercity passenger transportation.	
TENIT	GWa	Total energy consumption, intercity passenger transportation.	
TMFMIS	GWa	Fuel consumption, international and military (miscellaneous) transportation.	
TELPT	GWa	Total electricity consumption for passenger transportation.	
TSCPT	GWa	Total steam coal consumption for passenger transportation.	
TMFPT	GWa	Total motor fuel consumption for passenger (including international and military) transportation.	
TENPT	GWa	Total energy consumption for passenger transportation.	

Table 4.21 List and definition of derived variables of final energy demand in transportation

FINAL ENERGY DEMAND IN TRANSPORTATION:			
(see worksheet FIN_Irp-D of MAED_d.xls)			
TELTR	GWa	Total electricity consumption for transportation.	
TSCTR	GWa	Total steam coal consumption for transportation.	
TDITR	GWa	Total diesel oil consumption for transportation.	
TGATR	GWa	Total gasoline consumption for transportation.	
TF5TR	GWa	Total consumption of fuel no. 5 for transportation.	
TF6TR	GWa	Total consumption of fuel no. 6 for transportation.	
TF7TR	GWa	Total consumption of fuel no. 7 for transportation.	
TF8TR	GWa	Total consumption of fuel no. 8 for transportation.	
ECTRF(I)	GWa	Total energy consumption for transportation, by fuel type I (including international and military transportation). I=1,,(NTF+1)	
FINTR	GWa	Final energy consumption for transportation.	
ECTRF.S(I)	%	Share of fuel type I (including international and military transportation) in final energy consumption for transportation. I=1,,(NTF+1)	
TMFTR	GWa	Total motor fuel consumption for transportation.	
TELTR.S	%	Share of electricity in total final energy consumption for transportation.	
TSCTR.S	%	Share of steam coal in total final energy consumption for transportation.	
TMFTR.S	%	Share of motor fuel in total final energy consumption for transportation.	
TENFT.S	%	Share of energy consumption for freight transportation in total final energy consumption for transportation.	
TENUT.S	%	Share of energy consumption for urban passenger transportation in total final energy consumption for transportation.	
TENIT.S	%	Share of energy consumption for intercity passenger transportation in total final energy consumption for transportation.	
TMFMIS.S	%	Share of energy consumption for international and military transportation in total final energy consumption for transportation.	

Table 4.2m List and definition of derived variables of useful energy demand in urban household

HOUSEHOLD:			
(See worksheet	03_111_01-0	UNIMAED_D.XIS)	
TUDW	10 ⁶ dw	Total stock of urban dwellings (assumed to be equal to the number of urban households).	
SHUHT(I)	GWa	Useful energy demand for space heating in urban dwellings of type I. I=1,,NUDT	
SHUH	GWa	Useful energy demand for space heating, urban households.	
HWUH	GWa	Useful energy demand for water heating, urban households.	
СКИН	GWa	Useful energy demand for cooking, urban households.	
ACUHT(I)	GWa	Useful energy demand for air conditioning in urban dwellings of type I. I=1,,NUDT	
ACUH	GWa	Useful energy demand for air conditioning, urban households.	
ELAPUH	GWa	Electricity consumption for specific uses in electrified urban dwellings (i.e. for purposes other than space and water heating, cooking and air conditioning).	
FFLTUH	GWa	Fossil fuel consumption for lighting and non-electric appliances (for example, refrigerators using natural gas) in non-electrified urban dwellings.	
USUH	GWa	Total useful energy demand in urban households.	
USEFUL ENERC (see worksheet "	USEFUL ENERGY DEMAND IN RURAL HOUSEHOLD: (see worksheet "US_HH_Rr-D" of MAED_D.xls)		
TRDW	10 ⁶ dw	Total stock of rural dwellings (assumed to be equal to the number of rural households).	
SHRHT(I)	GWa	Useful energy demand for space heating in rural dwellings of type I. I=1,,NRDT	
SHRH	GWa	Useful energy demand for space heating, rural households.	
HWRH	GWa	Useful energy demand for water heating, rural households.	
CKRH	GWa	Useful energy demand for cooking, rural households.	
ACRHT(I)	GWa	Useful energy demand for air conditioning in rural dwellings of type I. I=1,,NRDT	
ACRH	GWa	Useful energy demand for air conditioning, rural households.	
ELAPRH	GWa	Electricity consumption for specific uses in electrified rural dwellings (i.e. for purposes other than space and water heating, cooking and air conditioning).	
FFLTRH	GWa	Fossil fuel consumption for lighting and non-electric appliances (for example, refrigerators using natural gas) in non-electrified rural dwellings.	
USRH	GWa	Total useful energy demand in rural households.	

Table 4.2n List and definition of derived variables of final energy demand in urban household

FINAL ENERGY DEMAND IN URBAN HOUSEHOLD:		
IF.UH.SH	Gwa	I raditional fuel demand for space heating in urban households.
MB.UH.SH	GWa	Modern biomass demand for space heating in urban households.
EL.UH.SH	GWa	Electricity demand for space heating in urban households.
DH.UH.SH	GWa	District heat demand for space heating in urban households.
SS.UH.SH	GWa	Soft solar demand for space heating in urban households.
FF.UH.SH	GWa	Fossil fuel demand for space heating in urban households.
FIN.UH.SH	GWa	Final energy demand for space heating in urban households.
TF.UH.HW	GWa	Traditional fuel demand for water heating in urban households.
MB.UH.HW	GWa	Modern biomass demand for water heating in urban households.
EL.UH.HW	GWa	Electricity demand for water heating in urban households.
DH.UH.HW	GWa	District heat demand for water heating in urban households.
SS.UH.HW	GWa	Soft solar demand for water heating in urban households.
FF.UH.HW	GWa	Fossil fuel demand for water heating in urban households.
FIN.UH.HW	GWa	Final energy demand for water heating in urban households.
TF.UH.CK	GWa	Traditional fuel demand for cooking in urban households.
MB.UH.CK	GWa	Modern biomass demand for cooking in urban households.
EL.UH.CK	GWa	Electricity demand for cooking in urban households.
SS.UH.CK	GWa	Soft solar demand for cooking in urban households.
FF.UH.CK	GWa	Fossil fuel demand for cooking in urban households.
FIN.UH.CK	GWa	Final energy demand for cooking in urban households.
EL.UH.AC	GWa	Electricity demand for air conditioning in urban households.
FF.UH.AC	GWa	Fossil fuel demand for air conditioning in urban households.
FIN.UH.AC	GWa	Final energy demand for air conditioning in urban households.
EL.UH.AP	GWa	Electricity demand for specific uses in electrified urban dwellings (i.e. for purposes other than space and water heating, cooking and air conditioning).
FF.UH.AP	GWa	Fossil fuel demand for lighting and non-electric appliances (for example, refrigerators using natural gas) in non-electrified urban dwellings.
FIN.UH.AP	GWa	Final energy demand for appliances and lighting in urban households.
TFUH	GWa	Traditional fuel demand in urban households.
MBUH	GWa	Modern biomass demand in urban households.
ELUH	GWa	Electricity demand in urban households.
DHUH	GWa	District heat demand in urban households.
SSUH	GWa	Soft solar demand in urban households.
FFUH	GWa	Fossil fuel demand in urban households.
FINUH	GWa	Final energy demand in urban households.

Table 4.20 List and definition of derived variables of final energy demand in rural household

FINAL ENERGY DEMAND IN RURAL HOUSEHOLD: (see Tables 16.7 ÷ 16.12 in worksheet "FIN_HH-D" of MAED_D.xls)		
TF.RH.SH	GWa	Traditional fuel demand for space heating in rural households.
MB.RH.SH	GWa	Modern biomass demand for space heating in rural households.
EL.RH.SH	GWa	Electricity demand for space heating in rural households.
DH.RH.SH	GWa	District heat demand for space heating in rural households.
SS.RH.SH	GWa	Soft solar demand for space heating in rural households.
FF.RH.SH	GWa	Fossil fuel demand for space heating in rural households.
FIN.RH.SH	GWa	Final energy demand for space heating in rural households.
TF.RH.HW	GWa	Traditional fuel demand for water heating in rural households.
MB.RH.HW	GWa	Modern biomass demand for water heating in rural households.
EL.RH.HW	GWa	Electricity demand for water heating in rural households.
DH.RH.HW	GWa	District heat demand for water heating in rural households.
SS.RH.HW	GWa	Soft solar demand for water heating in rural households.
FF.RH.HW	GWa	Fossil fuel demand for water heating in rural households.
FIN.RH.HW	GWa	Final energy demand for water heating in rural households.
TF.RH.CK	GWa	Traditional fuel demand for cooking in rural households.
MB.RH.CK	GWa	Modern biomass demand for cooking in rural households.
EL.RH.CK	GWa	Electricity demand for cooking in rural households.
SS.RH.CK	GWa	Soft solar demand for cooking in rural households.
FF.RH.CK	GWa	Fossil fuel demand for cooking in rural households.
FIN.RH.CK	GWa	Final energy demand for cooking in rural households.
EL.RH.AC	GWa	Electricity demand for air conditioning in rural households.
FF.RH.AC	GWa	Fossil fuel demand for air conditioning in rural households.
FIN.RH.AC	GWa	Final energy demand for air conditioning in rural households.
EL.RH.AP	GWa	Electricity demand for specific uses in electrified rural dwellings (i.e. for purposes other than space and water heating, cooking and air conditioning).
FF.RH.AP	GWa	Fossil fuel demand for lighting and non-electric appliances in non- electrified rural dwellings.
FIN.RH.AP	GWa	Final energy demand for appliances and lighting in rural households.
TFRH	GWa	Traditional fuel demand in rural households.
MBRH	GWa	Modern biomass demand in rural households.
ELRH	GWa	Electricity demand in rural households.
DHRH	GWa	District heat demand in rural households.
SSRH	GWa	Soft solar demand in rural households.
FFRH	GWa	Fossil fuel demand in rural households.
FINRH	GWa	Final energy demand in rural households.

Table 4.2p List and definition of derived variables of final energy demand in household sector

FINAL ENERGY (see Tables 16.1	3 ÷ 16.18 in wo	HOUSEHOLD SECTOR: prksheet "FIN_HH-D" of MAED_D.xls)
TF.HH.SH	GWa	Traditional fuel demand for space heating in Household.
MB.HH.SH	GWa	Modern biomass demand for space heating in Household.
EL.HH.SH	GWa	Electricity demand for space heating in Household.
DH.HH.SH	GWa	District heat demand for space heating in Household.
SS.HH.SH	GWa	Soft solar demand for space heating in Household.
FF.HH.SH	GWa	Fossil fuel demand for space heating in Household.
FIN.HH.SH	GWa	Final energy demand for space heating in Household.
TF.HH.HW	GWa	Traditional fuel demand for water heating in Household.
MB.HH.HW	GWa	Modern biomass demand for water heating in Household.
EL.HH.HW	GWa	Electricity demand for water heating in Household.
DH.HH.HW	GWa	District heat demand for water heating in Household.
SS.HH.HW	GWa	Soft solar demand for water heating in Household.
FF.HH.HW	GWa	Fossil fuel demand for water heating in Household.
FIN.HH.HW	GWa	Final energy demand for water heating in Household.
TF.HH.CK	GWa	Traditional fuel demand for cooking in Household.
MB.HH.CK	GWa	Modern biomass demand for cooking in Household.
EL.HH.CK	GWa	Electricity demand for cooking in Household.
SS.HH.CK	GWa	Soft solar demand for cooking in Household.
FF.HH.CK	GWa	Fossil fuel demand for cooking in Household.
FIN.HH.CK	GWa	Final energy demand for cooking in Household.
EL.HH.AC	GWa	Electricity demand for air conditioning in Household.
FF.HH.AC	GWa	Fossil fuel demand for air conditioning in Household.
FIN.HH.AC	GWa	Final energy demand for air conditioning in Household.
EL.HH.AP	GWa	Electricity demand for specific uses in electrified dwellings (i.e. for purposes other than space and water heating, cooking and air conditioning).
FF.HH.AP	GWa	Fossil fuel demand for lighting and non-electric appliances in non- electrified dwellings.
FIN.HH.AP	GWa	Final energy demand for appliances and lighting in Household.
TFHH	GWa	Traditional fuel demand in Household.
MBHH	GWa	Modern biomass demand in Household.
ELHH	GWa	Electricity demand in Household.
DHHH	GWa	District heat demand in Household.
SSHH	GWa	Soft solar demand in Household.
FFHH	GWa	Fossil fuel (substitutable) demand in Household.
FINHH	GWa	Final energy demand in Household.

Table 4.2q List and definition of derived variables of useful energy demand in service sector

SERVICE:			
USEFUL ENERGY DEMAND IN SERVICE: (see worksheet "US_SS-D" of MAED_D.xls)			
LSER	10 ⁶ empl	Number of employees in Service sector.	
TAREA	10 ⁶ sqm	Total Service sector floor area.	
TARSH	10 ⁶ sqm	Total Service sector floor area where space heating is required.	
US.SH.SER	GWa	Useful energy demand for space heating in Service sector.	
US.AC.SER	GWa	Useful energy demand for air conditioning in the Service sector.	
EI.MF.SER	kWh/MU	Energy intensity of motor fuel use in Service sector.	
EI.ELS.SER	kWh/MU	Energy intensity of electricity specific uses in Service sector.	
EI.OTU.SER	kWh/MU	Energy intensity of other thermal uses (except space heating) in Service sector.	
US.MF.SE(I)	GWa	Energy demand for motor fuels in subsector I of Service sector. I=1,,NSSER	
US.MF.SER	GWa	Energy demand for motor fuels in Service sector.	
MFSER			
US.ELS.SE(I)	GWa	Electricity demand for specific uses in subsector I of Service sector.	
		I=1,,NSSER	
US.ELS.SER	GWa	Electricity demand for specific uses in Service sector.	
ELSSER			
US.OTU.SE(I)	GWa	Useful energy demand for other thermal uses (except space heating) in subsector I of Service sector. I=1,,NSSER	
US.OTU.SER	GWa	Useful energy demand for other thermal uses (except space heating) in Service sector.	
US.SER	GWa	Total useful energy demand in Service sector.	

Table 4.2r List and definition of derived variables of final energy demand in service sector

FINAL ENERGY (see worksheet "	DEMAND IN S FIN_SS-D" of N	SERVICE: //AED_D.xls)
TF.TU.SER	GWa	Traditional fuel demand for thermal uses in Service sector.
MB.TU.SER	GWa	Modern biomass demand for thermal uses in Service sector.
EL.TU.SER	GWa	Electricity demand for thermal uses in Service sector.
DH.TU.SER	GWa	District heat demand for thermal uses in Service sector.
SS.TU.SER	GWa	Soft solar demand for thermal uses in Service sector.
FF.TU.SER	GWa	Fossil fuel demand for thermal uses in Service sector.
FIN.TU.SER	GWa	Final energy demand for thermal uses in Service sector.
EL.AC.SER	GWa	Electricity demand for air conditioning in Service sector.
FF.AC.SER	GWa	Fossil fuel demand for air conditioning in Service sector.
FIN.AC.SER	GWa	Final energy demand for air conditioning in Service sector.
TFSER	GWa	Traditional fuel demand in Service sector.
MBSER	GWa	Modern biomass demand in Service sector.
ELSER	GWa	Electricity demand in Service sector.
DHSER	GWa	District heat demand in Service sector.
SSSER	GWa	Soft solar demand in Service sector.
FFSER	GWa	Fossil fuel (substitutable) demand in Service sector.
FINSER	GWa	Final energy demand in Service sector.

Table 4.2 s List and definition of derived variables of total final energy demand for the country/region

TOTAL FINAL ENERGY DEMAND FOR THE COUNTRY/REGION: (see worksheet "FINAL-D" of MAED D.xls)		
тс	GW/a	Grand total, thermal use of traditional fuels
ΙΓ	Giva	
MB	GWa	Grand total, thermal use of modern biomass.
ELTU	GWa	Grand total, thermal use of electricity.
ELNTU	GWa	Grand total, non-thermal use of electricity.
ELEC	GWa	Grand total, electricity demand.
DH	GWa	Grand total, district heat demand.
SS	GWa	Grand total, solar energy demand.
FF	GWa	Grand total, thermal use of fossil fuels.
MF	GWa	Grand total, motor fuel demand.
COALSP	GWa	Grand total, specific uses of coal.
TFEED	GWa	Grand total, feedstock demand.
FINEN	GWa	Grand total, final energy demand.
FINEN.CAP	MWh/cap	Per capita total final energy demand.
EI.FIN.GDP	kWh/MU	Energy intensity of final energy use (i.e. final energy consumption per monetary unit of GDP).

5 PRINCIPAL EQUATIONS USED IN THE MAED MODULE 1

5.1 Introduction

This section provides a logical sequence of the calculations performed by the module MAED_D.xls. Some of these equations are trivial but they may help to clarify how the various scenario parameters affect the results as well as in understanding the MAED_D module. This will also facilitate the process of introducing changes in a future program version.

In the description which follows, the input variables have been written in bold letters in order to facilitate their distinction from the derived variables used by the program. Furthermore, an underline below a derived parameter indicates that its value is not explicitly listed in the Tables of MAED_D.xls worksheets. In order to keep this description as compact as possible, the definitions of various variables given in Section 4 of the manual are generally not repeated after the related equations. Besides, it is believed that in most cases the meaning of the variables is often clear by context, as it is illustrated in a few examples.

5.2 Energy units

As the energy intensities for the various energy uses in Agriculture, Construction, Mining, Manufacturing and Service sectors are expressed in kWh/MU, the specific energy consumption in Household sector are expressed in kWh/dw/yr or kWh/cap/yr and in Service sector in kWh/sqm/yr, the straightforward internal energy unit of the MAED D model is **Terawatt-hours** (TWh = 10^9 kWh). All the equations of the model include also a conversion factor from TWh to the energy unit specified by the user in cell E50 of the workshhet "Defs". As such, the energy consumption/demand can be also expressed in all worksheets of the model in this unit. The corresponding conversion factor (CF1) from TWh to the unit specified in cell E50 must be indicated in cell N50 of workshhet "Defs". Grand totals of final energy demand for the country/region under study, expressed in that unit are listed in worksheet "Final-D". To have the same grand totals converted to another user-desired energy unit (Mtce, Mtoe, PJ etc.), this new energy unit must be specified by the user in cells L50 and the corresponding conversion factor from the energy unit from cell E50 to the new energy unit in cell M50. The energy demands expressed in this last energy unit are shown in worksheet "Final Results (User Units)". A comprehensive set of conversion factors for this purpose is provided in a separate worksheet "Convs" of the MAED D.xls file.

5.3 Demographic calculations

In MAED_D.xls (see worksheet "Demogr-D") the evolution of population as a function of time is defined exogenously as a scenario parameter. This can be done in two ways: either one can specify the population size PO for each model year or, alternatively, one can give the population figure only for the first reference year and provide values of the average annual growth rate of population, POGR (in % per annum), between all successive model years. In the former case, MAED_D.xls may be used to calculate POGR and, in the latter case, PO through the relations:

POGR = { (**PO** / **PO**(-1))^(1/INCR) - 1 } * 100 or

PO = **PO**(-1) * $(1 + (POGR / 100))^{INCR}$

where: **PO** and **PO(-1)** represent the size of the population in the current and the last previous model years respectively, **POGR** is the growth rate of population between the two model years, and

INCR is the number of years between the current and the last previous model years.

Some other demographic parameters, namely the share of urban population (PURB), the average household size in urban areas (CAPUH) and in rural areas (CAPRH), the share of population of age 15-64 in the total population (potential labour force, PLF), the share of potential labour force actually working (PARTLF) and the fraction of the total population living in large cities (POPLC) are also defined exogenously in the model. From these are derived the following parameters which are used in the energy demand calculations of the Transportation, Household and Service sectors:

- Number of urban households (10^6)

UHH = **PO * (PURB** / 100) / **CAPUH**

- Share of rural population (%)

PRUR = 100 - PURB

- Number of rural households (10^6)

RHH

Large cities population (10^6)

= **PO** * (1 - **PURB** / 100) / **CAPRH**

POLC = PO * (POPLC / 100)

- Total active labour force (10^6)

ALF = PO * (PLF / 100) * (PARTLF / 100)

5.4 Macroeconomic calculations

Like the population evolution, the growth of GDP (Gross Domestic Product, Y) is also defined exogenously as a scenario parameter and is specified in the same two ways, namely either in terms of the values of Y (in constant currency units of the base year or some other reference year) for each model year or by specifying the GDP value only for the first reference year together with the values of the average annual growth rate of GDP, **YGR** (in % per annum) between all successive model years. MAED_D.xls (see worksheet "GDP-D") then calculates YGR in the former case and Y in the latter case, according to the relations:

and

$$\mathbf{Y} = \mathbf{Y}(-1) * (1 + (\mathbf{Y}\mathbf{G}\mathbf{R} / 100))^{\text{INCR}}$$

where: Y and Y(-1) represent the values of the GDP in the current and the last previous model years respectively, and YGR is the growth rate of GDP between the two model years. Again, INCR represents the number of years between the current and the last previous model years.

The changes in the structural composition of GDP by main sectors, as well as the changes in the structural compositions of main sector value added by sub sectors, over the projection period are also exogenously defined by the user as a part of the scenario. From these scenario input parameters the module calculates, for each model year, first the GDP formation by economic sector, and then the value added by sub sectors of each sector in the following manner:

GDP ((\mathbf{Y})) formation b	y economic sector and subsector	(10^9)	monetary	units.	MU)):
								_

YAGR	= $Y * (PYAGR / 100)$	(AGRiculture)
YCON	= $Y * (PYCON / 100)$	(CONstruction)
YMIN	= $Y * (PYMIN / 100)$	(MINing)
YMAN	= $Y * (PYMAN / 100)$	(MANufacturing)
YSER	= $Y * (PYSER / 100)$	(SERvice)
YEN	= Y * (PYEN / 100)	(ENergy)

where: **PYAGR, PYCON, PYMIN, PYMAN, PYSER and PYEN** are the % shares of GDP contributed by the respective economic sectors, as specified in worksheet "GDP-D".

The values added (VA) of the subsectors of Agriculture, Construction, Mining, Manufacturing and Service are:

YAG(I)	= $YAGR * (PVAAG(I) / 100)$	I=1,,NSAGR (AGRiculture)
YCO(I)	= YCON * (PVACO(I) / 100)	I=1,,NSCON (CONstruction)
YMI(I)	= $YMIN * (PVAMI(I) / 100)$	I=1,,NSMIN (MINing)
YMA(I)	= $YMAN * (PVAMA(I) / 100)$	I=1,,NSMAN (MANufacturing)
YSE(I)	= YSER * (PVASE(I) / 100)	I=1,,NSSER (SERvice)

where: **PVAAG(I)**, **PVACO(I)**, **PVAMI(I)**, **PVAMA(I)** and **PVASE(I)** are the % shares of value added of subsector I (as specified in worksheet "GDP-D") in the respective value added of the main economic sector, and **NSAGR**, **NSCON**, **NSMIN**, **NSMAN** and **NSSER** are the number of subsectors in each of the main economic sector.

Total GDP per capita (MU/CAP):

Y.CAP = Y / PO * 1000

Economic sector value added per capita (MU/CAP):

YAGR.CAP	= YAGR / PO * 1000	(AGRiculture)
YCON.CAP	= YCON / PO * 1000	(CONstruction)
YMIN.CAP	= YMIN / PO * 1000	(MINing)
YMAN.CAP	= YMAN / PO * 1000	(MANufacturing)
YSER.CAP	= $YSER / PO * 1000$	(SERvice)
YEN.CAP	= YEN / PO * 1000	(ENergy)

Growth rates of sector/subsector value added, total GDP and per capita GDP (%):

YAGR.GR	=	$\{ (YAGR / YAGR(-1))^{(1/INCR)} - 1 \} * 100$	(AGRiculture)
YAG.GR(I)	=	{ (YAG(I) / YAG(I)(-1)) ^(1/INCR) - 1 } * 100	I=1,,NSAGR
YCON.GR	=	$\{ (YCON / YCON(-1))^{(1/INCR)} - 1 \} * 100$	(CONstruction)
YCO.GR(I)	=	{ (YCO(I) / YCO(I)(-1)) ^(1/INCR) - 1 } * 100	I=1,,NSCON
YMIN.GR	=	$\{ (YMIN / YMIN(-1))^{(1/INCR)} - 1 \} * 100$	(MINing)
YMI.GR(I)	=	{ (YMI(I) / YMI(I)(-1)) ^(1/INCR) - 1 } * 100	I=1,, NSMIN
YMAN.GR	=	$\{ (YMAN / YMAN(-1))^{(1/INCR)} - 1 \} * 100$	(MANufacturing)
YMA.GR(I)	=	{ (YMA(I) / YMA(I)(-1)) ^(1/INCR) - 1 } * 100	I=1,,NSMAN
YSER.GR	=	{ (YSER / YSER(-1)) ^(1/INCR) - 1 } * 100	(SERvice)
YSE.GR(I)	=	{ (YSE(I) / YSE(I)(-1)) ^(1/INCR) - 1 } * 100	I=1,,NSSER
YEN.GR	=	{ (YEN / YEN(-1)) ^(1/INCR) - 1 } * 100	(ENergy)
Y.GR	=	$\{ (Y / Y(-1))^{(1/INCR)} - 1 \} * 100$	(Total GDP)
Y.CAP.GR	=	$\{ (Y.CAP / Y.CAP(-1))^{(1/INCR)} - 1 \} * 100$	(Per capita GDP)

The previous equations are similar to those described earlier in relation with the variables **POGR** and **YGR**.

5.5 Energy demand calculations

5.5.1 Industry sector

(a) Average energy intensities in Agriculture, Construction, Mining and Manufacturing (see worksheet "EnInt-D" of MAED_D.xls)

Energy intensities of Motor Fuels (MF) use:

EI.MF.AGR =
$$\sum_{I=1}^{NSAGR}$$
 (EI.MF.AG(I) * PVAAG(I)) / 100 (AGRiculture)
EI.MF.CON = $\sum_{I=1}^{NSCON}$ (EI.MF.CO(I) * PVACO(I)) / 100 (CONstruction)

EI.MF.MIN =
$$\sum_{I=1}^{NSMIN} (EI.MF.MI(I) * PVAMI(I)) / 100$$
(MINing)

EI.MF.MAN =
$$\sum_{I=1}^{NSMAN}$$
 (EI.MF.MA(I) * PVAMA(I)) / 100 (MANufacturing)

Energy intensities of ELectricity, Specific uses (ELS):

EI.ELS.AGR =
$$\sum_{I=1}^{NSAGR}$$
 (EI.ELS.AG(I) * PVAAG(I)) / 100 (AGRiculture)

EI.ELS.CON =
$$\sum_{I=1}^{NSCON}$$
 (EI.ELS.CO(I) * PVACO(I)) / 100 (CONstruction)

EI.ELS.MIN =
$$\sum_{I=1}^{NSMIN}$$
 (EI.ELS.MI(I) * PVAMI(I)) / 100 (MINing)

EI.ELS.MAN =
$$\sum_{I=1}^{NSMAN}$$
 (EI.ELS.MA(I) * PVAMA(I)) / 100 (MANufacturing)

Energy intensities of Thermal Uses (TU):

EI.TU.AGR =
$$\sum_{I=1}^{NSAGR}$$
 (EI.TU.AG(I) * PVAAG(I)) / 100 (AGRiculture)

EI.TU.CON =
$$\sum_{I=1}^{NSCON}$$
 (EI.TU.CO(I) * PVACO(I)) / 100 (CONstruction)

EI.TU.MIN =
$$\sum_{I=1}^{NSMIN}$$
 (EI.TU.MI(I) * PVAMI(I)) / 100 (MINing)

EI.TU.MAN =
$$\sum_{I=1}^{NSMAN}$$
 (EI.TU.MA(I) * PVAMA(I)) / 100 (MANufacturing)

(b) Energy demand of agriculture, construction and mining (ACM)

The demand for motor fuels and for specific uses of electricity (such as lighting, motive power and electrolysis) is calculated directly in terms of final energy. However, the demand for thermal energy is first calculated in terms of useful energy and then converted to final energy based on scenario assumptions about the penetration of alternative energy sources (traditional fuels, modern biomass, electricity, soft solar and fossil fuels) into this demand market and their efficiencies (relative to the use of electricity with conventional technologies).

(b.1) Energy demand for motor fuels, electricity (specific uses) and thermal uses

(see worksheets "UsEne-D" and "FIN_ACM" of MAED_D.xls)

Final energy demand for Motor Fuels (MF):

US.MF.AG(I)	=	EI.MF.AG(I) * YAG(I) * CF1	I=1,,NSAGR (AGR subsector I)
MFAGR	=	US.MF.AGR	
	=	$\sum_{I=1}^{NSAGR} \text{ US.MF.AG(I)}$	
	=	$\sum_{I=1}^{NSAGR} (EI.MF.AG(I) * YAG(I)) * CF1$	(AGR)
US.MF.CO(I)	=	EI.MF.CO(I) * YCO(I) * CF1	I=1,,NSCON (CON subsector I)
MFCON	=	US.MF.CON	
	=	$\sum_{I=1}^{NSCON} \text{US.MF.CO(I)}$	
	=	$\sum_{I=1}^{NSCON} (EI.MF.CO(I) * YCO(I)) * CF1$	(CON)
US.MF.MI(I)	=	EI.MF.MI(I) * YAG(I) * CF1	I=1,, NSMIN (MIN subsector I)
MFMIN	=	US.MF.MIN	
	=	$\sum_{I=1}^{NSMIN} \text{US.MF.MI(I)}$	
	=	$\sum_{I=1}^{NSMIN} (EI.MF.MI(I) * YMI(I)) * CF1$	(MIN)
MFACM	=	MFAGR + MFCON + MFMIN	(ACM)

Final energy demand for ELectricity for Specific uses (ELS): US.ELS.AG(I) = EI.ELS.AG(I) * YAG(I) * CF1I=1,....,NSAGR (AGR subsector I) ELSAGR = US ELS AGR $= \sum_{i=1}^{NSAGR} \text{US.ELS.AG(I)}$ $= \sum_{I=1}^{NSAGR} (EI.ELS.AG(I) * YAG(I)) * CF1$ (AGR) US.ELS.CO(I) = EI.ELS.CO(I) * YCO(I) * CF1 I=1,....,NSCON (CON subsector I) ELSCON = US. ELS.CON $= \sum_{I=1}^{NSCON} \text{US.ELS.CO(I)}$ $= \sum_{r=1}^{NSCON} (EI. ELS.CO(I) * YCO(I)) * CF1$ (CON) I=1,....,NSMIN US.ELS.MI(I) = **EI.ELS.MI(I)** * YMI(I) * CF1 (MIN subsector I) **ELSMIN** = US.ELS.MIN $= \sum_{i=1}^{NSMIN} US.ELS.MI(I)$ $= \sum_{I=1}^{NSMIN} (EI. ELS.MI(I) * YMI(I)) * CF1$ (MIN) = ELSAGR + ELSCON + ELSMIN ELSACM (ACM) Useful energy demand for Thermal Uses (TU): US.TU.AG(I) = EI.TU.AG(I) * YAG(I) * CF1 I=1,....,NSAGR (AGR subsector I) US.TU.AGR = $\sum_{I=1}^{NSAGR}$ US.TU.AG(I) $= \sum_{l=1}^{NSAGR} EI.TU.AG(I) * YAG(I)) * CF1$ (AGR) US.TU.CO(I) = EI.TU.CO(I) * YCO(I) * CF1I=1,....,NSCON (CON subsector I) US.TU.CON = $\sum_{i=1}^{NSCON}$ US.TU.CO(I) $= \sum_{I=1}^{NSCON} (\mathbf{EI.TU.CO(I)} * YCO(I)) * \mathbf{CF1}$ (CON) US.TU.MI(I) = EI.TU.MI(I) * YMI(I) * CF1 I=1,....,NSMIN (MIN subsector I)

US.TU.MIN =
$$\sum_{I=1}^{NSMIN}$$
 US.TU.MI(I)
= $\sum_{I=1}^{NSMIN}$ (EI.TU.MI(I) * YMI(I)) * CF1 (MIN)

US.TU.ACM = US.TU.AGR + US.TU.CON + US.TU.MIN(ACM)

In the previous equations, **CF1** is the conversion factor from TWh, internal energy unit of the model, to the energy unit specified in cell E50 of worksheet "Defs".

(b.2) Average penetration of alternative energy forms into useful thermal energy for ACM (%):(see Table 5-4 of worksheet "ACMFac-D" in MAED D.xls)

In Tables 5-1 to 5-3 of worksheet "ACMFac-D" the particular penetrations of different energy carriers (traditional fuels, modern biomass, electricity, solar and fossil fuels) into the useful thermal energy demand market of each sector (Agriculture, Construction and Mining) are entered. Based on these sector related penetrations and on the share of each sector in the total market of useful thermal energy demand of the three sectors, the weighted average penetration of each energy carrier into the market is calculated (Table 5-4) as follows:

Traditional fuels (TF):

TFPACM	= TFPAGR * EI.TU.AGR * YAGR
	+ TFPCON * EI.TU.CON * YCON
	+ TFPMIN * EI.TU.MIN * YMIN)
	/ (EI.TU.AGR * YAGR + EI.TU.CON * YCON
	+ EI.TU.MIN * YMIN)

= (**TFPAGR** * US.TU.AGR + **TFPCON** * US.TU.CON + **TFPMIN** * US.TU.MIN)/ US.TU.ACM

Modern biomass (MB):

MBPACM	= (MBPAGR * EI.TU.AGR * YAGR + MBPCON * EI.TU.CON * Y	CON
	+ MBPMIN * EI.TU.MIN * YMIN) /	
	(EI.TU.AGR * YAGR + EI.TU.CON * YCON + EI.TU.MIN * YMI	N)
	(MBPAGR * US.TU.AGR + MBPCON * US.TU.CON	
	+ MBPMIN * US TU MIN) / US TU ACM	

Electricity (EL-conventional):

ELPACM	=	(ELPAGR * EI.TU.AGR * YAGR
		+ ELPCON * EI.TU.CON * YCON
		+ ELPMIN * EI.TU.MIN * YMIN) /
		(EI.TU.AGR * YAGR + EI.TU.CON * YCON + EI.TU.MIN * YMIN)
	=	(ELPAGR * US.TU.AGR + ELPCON * US.TU.CON
		+ ELPMIN * US.TU.MIN) / US.TU.ACM
Soft solar sys	stem	<u>s (SS):</u>
		(SSDACD - ELTILACD - VACD - SSDCON - ELTILCON - VCON

SSPACM	= (SSPAGR * EI.TU.AGR * YAGR + SSPCON * EI.TU.CON * YCON
	+ SSPMIN * EI.TU.MIN * YMIN) /
	(EI.TU.AGR * YAGR + EI.TU.CON * YCON + EI.TU.MIN * YMIN)
	= (SSPAGR * US.TU.AGR + SSPCON * US.TU.CON
	+ SSPMIN * US.TU.MIN) / US.TU.ACM

Fossil fuels (FF):

FFPACM	= (FFPAGR * EI.TU.AGR * YAGR + FFPCON * EI.TU.CON * YCON
	+ FFPMIN * EI.TU.MIN * YMIN)
	/(EI.TU.AGR * YAGR + EI.TU.CON * YCON + EI.TU.MIN * YMIN)
	= (FFPAGR * US.TU.AGR + FFPCON * US.TU.CON + FFPMIN * US TU MIN) / US TU ACM
	• FFI WIIV * 05.10.WIIV)/ 05.10.ACM

(b.3) Conversion of useful energy demand for thermal uses to final energy demand in ACM (see worksheet "FIN_ACM" in MAED_D.xls)

Agriculture (AGR):

TFAGR	=	US.TU.AGR * (TFPAGR / 100) / (TFEAGR /100)	(traditional fuels)
MBAGR	=	US.TU.AGR * (MBPAGR / 100) / (MBEAGR /100)	(modern biomass)
ELHAGR	=	US.TU.AGR * (ELPAGR / 100)	(electricity for thermal uses)
SSAGR	=	US.TU.AGR * (SSPAGR / 100)	(soft solar)
FFAGR	=	US.TU.AGR * (FFPAGR / 100) / (FFEAGR /100)	(fossil fuels)
Construction (<u>(CC</u>	<u>DN):</u>	
TFCON	=	US.TU.CON * (TFPCON / 100) / (TFECON /100)	(traditional fuels)
MBCON	=	US.TU.CON * (MBPCON / 100) / (MBECON /100)	(modern biomass)
ELHCON	=	US.TU.CON * (ELPCON / 100)	(electricity for thermal uses)
SSCON	=	US.TU.CON * (SSPCON / 100)	(soft solar)
FFCON	=	US.TU.CON * (FFPCON / 100) / (FFECON /100)	(fossil fuels)
Mining (MIN	<u>):</u>		
TFMIN	=	US.TU.MIN * (TFPMIN / 100) / (TFEMIN /100)	(traditional fuels)
MBMIN	=	US.TU.MIN * (MBPMIN / 100) / (MBEMIN /100)	(modern biomass)
ELHMIN	=	US.TU.MIN * (ELPMIN / 100)	(electricity for thermal uses)
SSMIN	=	US.TU.MIN * (SSPMIN / 100)	(soft solar)
FFMIN	=	US.TU.MIN * (FFPMIN / 100) / (FFEMIN /100)	(fossil fuels)

(b.4) Final e	nerg (se	gy demand of Agriculture (AGR) ee worksheet "FIN_ACM" in MAED_D.xls)	
ELAGR	=	ELSAGR + ELHAGR	(electricity, total)
FINAGR	=	MFAGR + ELAGR + TFAGR + MBAGR + SSAGR + FFAGR	(total final energy)
Energy form	sha	res in Agriculture total final energy demand (%):	
TFAGR.S	=	TFAGR / FINAGR * 100	(traditional fuels)
MBAGR.S	=	MBAGR / FINAGR * 100	(modern biomass)
ELAGR.S	=	ELAGR / FINAGR * 100	(electricity)
SSAGR.S	=	SSAGR / FINAGR * 100	(soft solar)
FFAGR.S	=	FFAGR / FINAGR * 100	(fossil fuels)
MFAGR.S	=	MFAGR / FINAGR * 100	(motor fuels)
Final energy	dem	nand per value added (energy intensity) in Agriculture (k	Wh/MU):
EI.TF.AGR	=	(TFAGR / YAGR) / CF1	(traditional fuels)
EI.MB.AGR	=	(MBAGR / YAGR) / CF1	(modern biomass)
EI.EL.AGR	=	(ELAGR / YAGR) / CF1	(electricity)
EI.SS.AGR	=	(SSAGR / YAGR) / CF1	(soft solar)
EI.FF.AGR	=	(FFAGR / YAGR) / CF1	(fossil fuels)
EI.MF.AGR	=	(MFAGR / YAGR) / CF1	(motor fuels)
EI.FIN.AGR	=	(FINAGR / YAGR) / CF1	(total final energy)
(b.5) Final en (see workshe	nerg et "]	gy demand of Construction (CON) FIN_ACM" in MAED_D.xls)	
ELCON	=	ELSCON + ELHCON	(total electricity)
FINCON	=	MFCON + ELCON + TFCON + MBCON + SSCON + FFCON	(total final energy)
Energy form	sha	res in Construction total final energy demand (%):	
TFCON.S	=	TFCON / FINCON * 100	(traditional fuels)
MBCON.S	=	MBCON / FINCON * 100	(modern biomass)

ELCON.S	=	ELCON / FINCON * 100	(electricity)
SSCON.S	=	SSCON / FINCON * 100	(soft solar)
FFCON.S	=	FFCON / FINCON * 100	(fossil fuels)
MFCON.S	=	MFCON / FINCON * 100	(motor fuels)
Final energy	dem	and per value added (energy intensity) in Construction (kV	Wh/MU):
EI.TF.CON	=	(TFCON / YCON) / CF1	(traditional fuels)
EI.MB.CON	=	(MBCON / YCON) / CF1	(modern biomass)
EI.EL.CON	=	(ELCON / YCON) / CF1	(electricity)
EI.SS.CON	=	(SSCON / YCON) / CF1	(soft solar)
EI.FF.CON	=	(FFCON / YCON) / CF1	(fossil fuels)
EI.MF.CON	=	(MFCON / YCON) / CF1	(motor fuels)
EI.FIN.CON	=	(FINCON / YCON) / CF1	(total final energy)

(b.6) Final energy demand of Mining (MIN) (see worksheet "FIN_ACM" in MAED_D.xls)

ELMIN	=	ELSMIN + ELHMIN	(electricity, total)
FINMIN	=	MFMIN + ELMIN + TFMIN + MBMIN + SSMIN + FFMIN	(total final energy)
Energy form	shar	res in Mining total final energy demand (%):	
TFMIN.S	=	TFMIN / FINMIN * 100	(traditional fuels)
MBMIN.S	=	MBMIN / FINMIN * 100	(modern biomass)
ELMIN.S	=	ELMIN / FINMIN * 100	(electricity)
SSMIN.S	=	SSMIN / FINMIN * 100	(soft solar)
FFMIN.S	=	FFMIN / FINMIN * 100	(fossil fuels)
MFMIN.S	=	MFMIN / FINMIN * 100	(motor fuels)
Final energy	dem	and per value added (energy intensity) in Mining (kWh/M	<u>U):</u>
EI.TF.MIN	=	(TFMIN / YMIN) / CF1	(traditional fuels)
EI.MB.MIN	=	(MBMIN / YMIN) / CF1	(modern biomass)
EI.EL.MIN	=	(ELMIN / YMIN) / CF1	(electricity)

EI.SS.MIN	= (SSMIN / YMIN) / CF1	(soft solar)
EI.FF.MIN	= $(FFMIN / YMIN) / CF1$	(fossil fuels)
EI.MF.MIN	= (MFMIN / YMIN) / CF1	(motor fuels)
EI.FIN.MIN	= $(FINMIN / YMIN) / CF1$	(total final energy)

(b.7) Final energy demand of agriculture, construction and mining (ACM) (see worksheet "FIN_ACM" in MAED_D.xls)

Total final energy demand by energy form

TFACM	=	TFAGR + TFCON + TFMIN	(traditional fuels)	
MBACM	=	MBAGR + MBCON + MBMIN	(modern biomass)	
ELSACM	=	ELSAGR + ELSCON + ELSMIN	(electricity for specific uses)	
ELHACM	=	ELHAGR + ELHCON + ELHMIN	(electricity for thermal uses)	
ELACM	=	ELSACM + ELHACM ELAGR + ELCON + ELMIN	(electricity, total)	
SSACM	=	SSAGR + SSCON + SSMIN	(soft solar)	
FFACM	=	FFAGR + FFCON + FFMIN	(fossil fuels)	
MFACM	=	MFAGR + MFCON + MFMIN	(motor fuels)	
FINACM	=	MFACM + ELACM + TFACM + MBACM + SSACM + FFACM		
	=	FINAGR + FINCON + FINMIN	(total final energy)	
Energy form	shar	res in ACM total final energy demand (%):		
TFACM.S	=	TFACM / FINACM * 100	(traditional fuels)	
MBACM.S	=	MBACM / FINACM * 100	(modern biomass)	
ELACM.S	=	ELACM / FINACM * 100	(electricity)	
SSACM.S	=	SSACM / FINACM * 100	(soft solar)	
FFACM.S	=	FFACM / FINACM * 100	(fossil fuels)	

Final energy demand per value added (energy intensity) in ACM (kWh/MU):

EI.TF.ACM = (TFACM / YACM) / CF1

MFACM. = MFACM / FINACM * 100

(traditional fuels)

(motor fuels)

EI.MB.ACM	=	(MBACM / YACM) / CF1	(modern biomass)
EI.EL.ACM	=	(ELACM / YACM) / CF1	(electricity)
EI.SS.ACM	=	(SSACM / YACM) / CF1	(soft solar)
EI.FF.ACM	=	(FFACM / YACM) / CF1	(fossil fuels)
EI.MF.ACM	=	(MFACM / YACM) / CF1	(motor fuels)
EI.FIN.ACM	=	(FINACM / YACM) / CF1	(total final energy)

(c) Energy demand of manufacturing (MAN)

The energy demand of Manufacturing sector is calculated in a similar manner as for ACM sectors: the demand for motor fuels and for specific uses of electricity (such as lighting, motive power and electrolysis) are calculated directly in terms of final energy. The demand for thermal energy is first calculated in terms of useful energy and then converted to final energy based on scenario assumptions about the penetration of alternative energy sources: traditional fuels, modern biomass, electricity (conventional and heat pumps), district heat, on-site cogeneration, soft solar and fossil fuels into this demand market and their efficiencies (relative to the use of electricity with conventional technologies).

(c.1) Final energy demand for motor fuels, electricity (specific uses) and useful energy demand for thermal uses

(see worksheet "UsEne-D" and "FIN_Ind-D" of MAED_D.xls)

Manufacturing subsector I:

US.MF.MA(I)=	EI.MF.MA(I) * YMA(I) * CF1	I=1,, NSMAN (MF)
US.ELS.MA(I)=	EI.ELS.MA(I) * YMA(I) * CF1	I=1,, NSMAN (ELS)
US.TU.MA(I) =	EI.TU.MA(I) * YMA(I) * CF1	I=1,, NSMAN (TU)

Manufacturing sector:

MFMAN = US.MF.MAN

$$= \sum_{I=1}^{NSMAN} US.MF.MA(I)$$

$$= \sum_{I=1}^{NSMAN} (EI.MF.MA(I) * YMA(I)) * CF1$$
(MF)

ELSMAN = US.ELS.MAN

$$= \sum_{I=1}^{NSMAN} \text{US.ELS.MA(I)}$$
$$= \sum_{I=1}^{NSMAN} (\text{ EI.ELS.MA(I)} * \text{YMA(I)}) * \text{CF1}$$
(ELS)
$$\text{US.TU.MAN} = \sum_{I=1}^{NSMAN} \text{US.TU.MA(I)}$$

$$= \sum_{I=1}^{NSMAN} (\mathbf{EI.TU.MA(I)} * YMA(I)) * \mathbf{CF1}$$
(TU)

In order to convert the useful thermal energy demand of the Manufacturing sector into final energy one needs to take into account the scenario specified assumptions about the penetration of alternative energy sources into their respective potential markets and their efficiencies. These potential markets are very broadly defined by three thermal processes (demand categories), namely:

- steam generation;
- furnace/direct heat (but excluding electrolysis and iron ore reduction by coke which are accounted for as specific uses);
- space and water heating

Useful thermal energy demand (US) by subsector and by type of use: (see worksheet "ManFac1-D" of MAED D.xls)

USMAN(I,1)	=	EI.TU.MA(I) * YMA(I) * (PUSIND(I,1) / 100) * CF1	(For subsector I;
	=	US.TU.MA(I) * (PUSIND(I,1) / 100) * CF1	steam generation)
USMAN(I,2)	=	EI.TU.MA(I) * YMA(I) * (PUSIND(I,2) / 100) * CF1	
	=	US.TU.MA(I) * (PUSIND(I,2) / 100) * CF1	(furnace/direct heat)
USMAN(I,3)	=	EI.TU.MA(I) * YMA(I) * (PUSIND(I,3) / 100) * CF1	
	=	US.TU.MA(I) * (PUSIND(I,3) / 100) * CF1	(space/water heating)
or, in general:			
USMAN(I,J)	=	EI.TU.MA(I) * YMA(I) * (PUSIND(I,J) / 100) * CF1	
	=	US.TU.MA(I) * (PUSIND(I,J) / 100) * CF1	
where:		Manufacturing subsectors: I=1,,NSMAN, and	

Thermal processes:	(J=1) Steam generation (STM)
	(J=2) Furnace/direct heat (FUR)
	(J=3) Space/water heating (SWH)

In the previous equations, **CF1** is the conversion factor from TWh to the energy unit specified in cell E50 of worksheet "Defs".

<u>Useful thermal energy demand (US) of Manufacturing by type of application:</u> (see worksheet "ManFac1-D" of MAED_D.xls)

US.STM.MAN = USMAN(1)

$$= \sum_{I=1}^{NSMAN} \text{USMAN}(I,1) \qquad (\text{steam generation})$$
US.FUR.MAN = USMAN(2)

$$= \sum_{I=1}^{NSMAN} \text{USMAN}(I,2) \qquad (furnace/direct heat)$$
US.SWH.MAN = USMAN(3)

$$= \sum_{I=1}^{NSMAN} \text{USMAN}(I,3) \qquad (space/water heating)$$

Useful thermal energy demand (US) by subsector of Manufacturing:

USMA(I) = USMAN(I,1) + USMAN(I,2) + USMAN(I,3) I=1,...,NSMAN

Total useful thermal energy demand in Manufacturing:

USMAN(4) = US.STM.MAN + US.FUR.MAN + US.SWH.MAN

$$= \sum_{I=1}^{3} \text{USMAN}(I)$$
$$= \sum_{I=1}^{NSMAN} \text{USMA}(I)$$

(c.2) Penetration in market (PM) of alternative energy forms (%) (see Tables 8-5 and 8-3 in worksheet "ManFac2-D" of MAED_D.xls)

Electricity (EL-conventional):

PMEL(1)	= ELPMAN(1) * $(1 - ($ HPP.STM.MAN / 100 $))$	(steam generation)
PMEL(2)	= ELPMAN(2)	(furnace/direct heat)

PMEL(3)	=	ELPMAN(3) * (1 – (HPP.SWH.MAN / 100))	(space/water heating)
PMEL(4)	=	(PMEL(1) * USMAN(1) + PMEL(2) * USMAN(2) + PMEL(3) * USMAN(3)) / USMAN(4)	(total useful thermal)
Electricity (I	HP-h	eat pump):	
PMHP(1)	=	ELPMAN(1) * (HPP.STM.MAN / 100)	(steam generation)
PMHP(2)	=	0	(furnace/direct heat)
PMHP(3)	=	ELPMAN(3) * (HPP.SWH.MAN / 100)	(space and water heating)
PMHP(4)	=	(PMHP(1) * USMAN(1) + PMHP(2) * USMAN(2) + PMHP(3) * USMAN(3)) / USMAN(4)	(total useful thermal)
District heat	(DH	<u>():</u>	
PMDH(1)	=	DHP.STM.MAN	(steam generation)
PMDH(2)	=	0	(furnace/direct heat)
PMDH(3)	=	DHP.SWH.MAN	(space/water heating)
PMDH(4)	=	(PMDH(1) * USMAN(1) + PMDH(2) * USMAN(2) + PMDH(3) * USMAN(3)) / USMAN(4)	(total useful thermal)
Soft solar sy	stem	<u>us (SS):</u>	
PMSS(1)	=	SSP.STM.MAN * (FIDS / 100)	(steam generation)
PMSS(2)	=	0	(furnace/direct heat)
PMSS(3)	=	SSP.SWH.MAN * (FIDS / 100)	(space/water heating)
PMSS(4)	=	(PMSS(1) * USMAN(1) + PMSS(2) * USMAN(2) + PMSS(3) * USMAN(3)) / USMAN(4)	(total useful thermal)
Cogeneration	n (wi	ithin industrial plants) as opposed to cogeneration in outs (CG):	
	n pia		
PMCG(1)	=	UGP.SI M.MAN	(steam generation)

PMCG(2)	=	0	(furnace/direct heat)
PMCG(3)	=	CGP.SWH.MAN	(space/water heating)
PMCG(4)	=	(PMCG(1) * USMAN(1) + PMCG(2) * USMAN(2) + PMCG(3) * USMAN(3)) / USMAN(4)	(total useful thermal)
Traditional f	fuels	<u>(TF):</u>	ulerinar)
PMTF(1)	=	TFPMAN(1)	(steam generation)
PMTF(2)	=	TFPMAN(2)	(furnace/direct heat)
PMTF(3)	=	TFPMAN(3)	(space/water heating)
PMTF(4)	=	(PMTF(1) * USMAN(1) + PMTF(2) * USMAN(2)	
		+ PMTF(3) * USMAN(3)) / USMAN(4)	(total useful thermal)
Modern bior	nass	<u>(MB):</u>	
PMMB(1)	=	MBPMAN(1)	(steam generation)
PMMB(2)	=	MBPMAN(2)	(furnace/direct heat)
PMMB(3)	=	MBPMAN(3)	(space/water heating)
PMMB(4)	=	(PMMB(1) * USMAN(1) + PMMB(2) * USMAN(2)	
		+ PMMB(3) * USMAN(3)) / USMAN(4)	(total useful thermal)
Fossil fuels	(FF)	(remainder):	
PMFF(1)	=	100 - (PMEL(1) + PMHP(1) + PMDH(1) + PMSS(1) + PMCG(1) + PMTF(1) + PMMB(1))	(steam generation)
PMFF(2)	=	100 – (PMEL(2) + PMHP(2) + PMDH(2) + PMSS(2) + PMCG(2) + PMTF(2) + PMMB(2))	(furnace/direct heat)
PMFF(3)	=	100 – (PMEL(3) + PMHP(3) + PMDH(3) + PMSS(3)	
		+ PMCG(3) + PMTF(3) + PMMB(3))	(space/water heating)
PMFF(4)	=	(PMFF(1) * USMAN(1) + PMFF(2) * USMAN(2)	
		+ PMFF(3) * USMAN(3)) / USMAN(4)	(total useful thermal)

131

(c.3) Average efficiencies of fossil fuels, traditional fuels and modern biomass for thermal processes (%, relative to electricity): (see Table 8-2 in worksheet "Man Fac2-D" of MAED D.xls)

Fossil fuels (FF):

FFEMAN(4) = USMAN(4) * PMFF(4) / [USMAN(1) * PMFF(1) / FFEMAN(1) + USMAN(2) * PMFF(2) / FFEMAN(2) + USMAN(3) * PMFF(3) / FFEMAN(3)]

Traditional fuels (TF):

= 0,

If

PMTF(4)

then

TFEMAN(4) = (TFEMAN(1) + TFEMAN(2) + TFEMAN(3)) / 3

Otherwise

TFEMAN(4) = USMAN(4) * PMTF(4) / [USMAN(1) * PMTF(1) / TFEMAN(1)+ USMAN(2) * PMTF(2) / TFEMAN(2)+ USMAN(3) * PMTF(3) / TFEMAN(3)]

Modern biomass (MB):

If PMMB(4) = 0,then MBEMAN(4) = (MBEMAN(1) + MBEMAN(2) + MBEMAN(3)) / 3Otherwise MBEMAN(4) = USMAN(4) * PMMF(4) / [USMAN(1) * PMMF(1) / MBEMAN(1) + USMAN(2) * PMMF(2) / MBEMAN(2) + USMAN(3) * PMMF(3) / MBEMAN(3)]

(c.4) Conversion of useful thermal energy to final energy demand

(see worksheet "FIN_Ind-D" of MAED_D.xls)

Cogeneration (CG):

COGSTH = USMAN(4) * (PMCG(4) / 100)

Modern biomass (MB):

MBMAN	=	USMAN(4) * PMMB (4) / MBEMAN(4) + COGSTH * (1+1/HELRAT) / (EFFCOG / 100) * (MBSCOG / 100)
	=	USMAN(4) * PMMB(4) / MBEMAN(4) + (USMAN(4) * [PMCG(4) / 100]) * $(1 + 1 / HELRAT)$

(USMAN(4) * [PMCG(4) / 100]) * (1 + 1 / HELKAT) / (EFFCOG / 100) * (MBSCOG / 100)

Fossil fuels (FF):

FFMAN	= USMAN(4) * PMFF(4) / FFEMAN(4) + COGSTH
	* (1+1/HELRAT)/(EFFCOG/100)*(1-[MBSCOG/100])

Electricity for thermal uses (ELH):

ELHMAN = USMAN(4) * (PMEL(4) + PMHP(4) / HPEMAN) / 100 - COGSTH / HELRAT = USMAN(4) * (PMEL(4) + PMHP(4) / HPEMAN) / 100 - (USMAN(4) * (PMCG(4) / 100)) / HELRAT

Traditional fuels (TF):

TFMAN = USMAN(4) * PMTF(4) / TFEMAN(4)

District heating (DH):

DHMAN = USMAN(4) * (PMDH(4) / 100)

Soft solar systems (SS):

SSMAN = USMAN(4) * (PMSS(4) / 100)

(c.5) Coke use for pig iron production:

(see Table 8-4 in worksheet "Man_Fac2-D" of MAED_D.xls)

PSTEEL	$= \mathbf{CPST}(1) + \mathbf{CPST}(2) * \mathbf{YMA}(1)$
COKE	= PSTEEL * (BOF /100) * (IRONST / 100) * (EICOK / 1000) * CF2 * CF1

where: CF2 is the conversion factor from Mtce to TWh, and CF1 is the conversion factor from TWh to the energy unit specified in cell E50 of worksheet "Defs".

(c.6) Feedstock requirements:

(see Table 8-4 in worksheet "Man_Fac2-D" of MAED_D.xls)

PFEED = CFEED(1) + CFEED(2) * YMA(1)

FEED = PFEED * CF3 * CF1

where: CF3 is the conversion factor from Mtoe to TWh, and CF1 is the conversion factor from TWh to the energy unit specified in cell E50 of worksheet "Defs".

Note: As the number of subsectors of the Manufacturing sector is a user-defined variable varying from 1 to 10, the steel production and feedstock requirements of the petrochemical industry are calculated in the model as a function of the value added by the first Manufacturing subsector. Therefore, if Manufacturing sector is split in several subsectors, for seek of consistency the steel-making industry and petrochemical industry must be considered, from both energy consumption and value added viewpoints, in the first Manufacturing subsector.

(c.7) Final energy demand of Manufacturing:

(see worksheet "FIN Ind-D" of MAED D.xls)

Total final energy demand by energy form

In addition to the final energy demands for traditional fuels (TFMAN), modern biomass (MBMAN), district heat (DHMAN), solar (SSMAN), fossil fuels (FFMAN), motor fuels (MFMAN), coke (COKE) and feedstock (FEED), previously calculated, the total final energy demand for electricity and final energy demand for the entire Manufacturing sector are also determined:

ELMAN	=	ELSMAN + ELHMAN ELSMAN + USMAN(4) * (PMEL(4) + PMHP(4) / HPEMAN) / 100 - { USMAN(4) * (PMCG(4) / 100) } / HELRAT	(electricity)
FINMAN	=	MFMAN + ELMAN + TFMAN + MBMAN + DHMAN + SSMAN + FFMAN + COKE + FEED	(total final energy)
Energy form s	shar	es in Manufacturing total final energy demand (%):	
TFMAN.S	=	TFMAN / FINMAN * 100	(traditional fuels)
MBMAN.S	=	MBMAN / FINMAN * 100	(modern biomass)
ELMAN.S	=	ELMAN / FINMAN * 100	(electricity)
DHMAN.S	=	DHMAN / FINMAN * 100	(district heat)
SSMAN.S	=	SSMAN / FINMAN * 100	(soft solar)
FFMAN.S	=	FFMAN / FINMAN * 100	(fossil fuels)
MFMAN.S	=	MFMAN / FINMAN * 100	(motor fuels)
COKEMAN.S	=	COKE / FINMAN * 100	(coke)
FEEDMAN.S	=	FEED / FINMAN * 100	(feedstock)
Final energy demand per value added (energy intensity) in Manufacturing (kWh/MU):			
EI.TF.MAN	=	(FMAN / YMAN) / CF1	(traditional fuels)
EI.MB.MAN	=	(MBMAN / YMAN) / CF1	(modern biomass)
EI.EL.MAN	=	(ELMAN / YMAN) / CF1	(electricity)
EI.DH.MAN	=	(DHMAN / YMAN) / CF1	(district heat)
EI.SS.MAN	=	(SSMAN / YMAN) / CF1	(soft solar)
EI.FF.MAN	=	(FFMAN / YMAN) / CF1	(fossil fuels)
EI.MF.MAN	=	(MFMAN / YMAN) / CF1	(motor fuels)

EI.COKE.MA	AN = (COKE / YMAN) / CF1	(coke)				
EI.FEED.MA	N = (FEED / YMAN) / CF1	(feedstock)				
EI.FIN.MAN	= $(FINMAN / YMAN) / CF1$	(total final energy)				
(d) Indust (see workshe	try sector totals eets "US_Ene-D" and "FIN_Ind-D" in MAED_D.xls)					
Total final e	nergy demand by energy form					
TFIND	= TFACM + TFMAN	(traditional fuels)				
MBIND	= MBACM + MBMAN	(modern biomass)				
ELSIND	= ELSACM + ELSMAN	(electricity for specific uses)				
ELHIND	= ELHACM + ELHMAN	(electricity for thermal uses)				
ELIND	= ELACM + ELMAN					
	= ELSIND + ELHIND	(electricity, total)				
DHIND	= DHMAN	(district heat)				
SSIND	= SSACM + SSMAN	(soft solar)				
FFIND	= FFACM + FFMAN	(fossil fuels)				
MFIND	= MFACM + MFMAN	(motor fuels)				
FININD	= TFIND + MBIND + ELIND + DHMAN + SSIND + FFIND + MFIND + COKE + FEED	(total final energy)				
Energy form	Energy form shares in Industry total final energy demand (%):					
TFIND.S	= TFIND / FININD * 100	(traditional fuels)				
MBIND.S	= MBIND / FININD * 100	(modern biomass)				
ELIND.S	= ELIND / FININD * 100	(electricity)				
DHIND.S	= DHIND / FININD * 100	(district heat)				
SSIND.S	= SSIND / FININD * 100	(soft solar)				
FFIND.S	= FFIND / FININD * 100	(fossil fuels)				
MFIND.S	= MFIND / FININD * 100	(motor fuels)				
COKEIND.S	= $COKE / FININD * 100$	(coke)				
FEEDIND.S	= FEED / FININD $*$ 100	(feedstock)				

Final energy demand per value added (energy intensity) in Industry (kWh/MU):

EI.TF.IND	=	(TFIND / (YAGR + YCON + YMIN + YMAN)) / CF1	(traditional fuels)
EI.MB.IND	=	MBIND / (YAGR + YCON + YMIN + YMAN) / CF1	(modern biomass)
EI.EL.IND	=	(ELIND / (YAGR + YCON + YMIN + YMAN)) / CF1	(electricity)
EI.DH.IND	=	(DHIND / (YAGR + YCON + YMIN + YMAN)) / CF1	(district heat)
EI.SS.IND	=	(SSIND / (YAGR + YCON + YMIN + YMAN)) / CF1	(soft solar)
EI.FF.IND	=	(FFIND / (YAGR + YCON + YMIN + YMAN)) / CF1	(fossil fuels)
EI.MF.IND	=	(MFIND / (YAGR + YCON + YMIN + YMAN)) / CF1	(motor fuels)
EI.COKE.IND	=	(COKE / (YAGR + YCON + YMIN + YMAN)) / CF1	(coke)
EI.FEED.IND	=	(FEED / (YAGR + YCON + YMIN + YMAN)) / CF1	(feedstock)
EI.FIN.IND	=	(FININD / (YAGR + YCON + YMIN + YMAN)) / CF1	(total final energy)

5.5.2 Transportation Sector

(a) Freight transportation (FT): (see worksheet "FrTrp-D" of MAED_D.xls)

Total ton-kilometers (10⁹ t-km):

= $CKFT + \sum_{I=1}^{NSAGR} (CTKFT(I) * YAG(I))$ TKFT + $\sum_{l=1}^{NSCON}$ (**CTKFT(NSAGR+I)** * YCO(I))

+
$$\sum_{I=1}^{NSMIN}$$
 (CTKFT(NSAGR+NSCON+I) * YMI(I))
+ $\sum_{I=1}^{NSMAN}$ (CTKFT(NSAGR+NSCON+NSMIN+I) * YMA(I))
+ $\sum_{I=1}^{NSSER}$ (CTKFT(NSAGR+NSCON+NSMIN+NSMAN+I) * YSE(I))

Distribution by transportation mode (10⁹ t-km):

TKFTM(I) = TKFT * (**SFTM(I)** / 100) I = 1, ..., NMFT

Energy intensity in units of kWh / 100 ton-kilometers:

Each freight transportation mode has assigned a fuel code number and a specific energy consumption (energy intensity) expressed in a natural unit chosen by the user. Each fuel has assigned a conversion factor from the natural unit for the energy intensity to kWh per 100 ton-kilometers. The following equation converts the energy intensity of freight transportation mode I from selected natural unit per 100 ton-kilometers to kWh/100tkm, taking into consideration the fuel used by each particular transportation mode.

$$FTMEI(I) = EIFTM(I) * CFFT(FCFT(I))$$
 I = 1,....,NMFT

Energy consumption by mode:

where: CF1 is the conversion factor from TWh to the energy unit specified in cell E50 of worksheet "Defs".

Energy consumption by fuel

Summing up only the FT modes using electricity:

ECFTF(1) = TELFT
=
$$\sum_{I=1;(FCFT(I)=1)}^{NMFT}$$
ECFTM(I)

Summing up only the FT modes using steam coal:

ECFTF(2) = TSCFT
=
$$\sum_{I=1;(FCFT(I)=2)}^{NMFT}$$
ECFTM(I)

Summing up only the FT modes using diesel oil)

ECFTF(3) = TDIFT = $\sum_{I=1;(FCFT(I)=3)}^{NMFT}$ ECFTM(I)

Summing up only the FT modes using gasoline:

ECFTF(4) = TGAFT
=
$$\sum_{I=1;(FCFT(I)=4)}^{NMFT}$$
ECFTM(I)
Summing up only the FT modes using fuel no. 5:

ECFTF(5) = TF5FT
=
$$\sum_{I=1;(FCFT(I)=5)}^{NMFT}$$
ECFTM(I)

Summing up only the FT modes using fuel no. 6:

ECFTF(6) = TF6FT
=
$$\sum_{I=1;(FCFT(I)=6)}^{NMFT}$$
 ECFTM(I)

Summing up only the FT modes using fuel no. 7:

ECFTF(7) = TF7FT
=
$$\sum_{I=1;(FCFT(I)=7)}^{NMFT}$$
 ECFTM(I)

Summing up only the FT modes using fuel no. 8:

ECFTF(8) = TF8FT = $\sum_{I=1;(FCFT(I)=8)}^{NMFT}$ ECFTM(I)

or, in general (total energy consumption of FT modes using fuel no. J):

ECFTF(J) =
$$\sum_{I=1;(FCFT(I)=J)}^{NMFT}$$
 ECFTM(I) J = 1, .,NTF

TMFFT = TDIFT + TGAFT + TF5FT + TF6FT + TF7FT + TF8FT
=
$$\sum_{J=3}^{NTF}$$
 ECFTF(J) (total motor fuels)

Total final energy demand of freight transportation subsector:

TENFT =
$$\sum_{I=1}^{NMFT}$$
 ECFTM(I)
= $\sum_{J=1}^{NTF}$ ECFTF(J)
= TELFT + TSCFT + TMFFT

(b) Passenger transportation

(b.1) Passenger, urban (or intracity) (see worksheet "PassIntra-D" of MAED_D.xls)

Total passenger-kilometers, urban (intracity) traffic (10⁹ p-km):

PKU = (DU * 365) * (POLC / 1000)= (DU * 365) * (POPLC / 100) * (PO / 1000) (urban transport demand)

Distribution by transportation mode (10⁹ p-km):

PKUTM(I) = PKU * (SUTM(I) / 100) I = 1,....,NMUT

Energy intensity in units of kWh / passenger-kilometer:

Each passenger intracity transportation mode has assigned a fuel code number and a specific energy consumption (energy intensity) expressed in a natural unit chosen by the user per 100 kilometers. Each fuel has assigned a conversion factor from the natural unit for the energy intensity to kWh per passenger-kilometer. The following equation converts the energy intensity of urban transportation mode I from selected natural unit per 100 kilometers to kWh/pkm, taking into consideration the fuel used by and the load factor of each particular transportation mode.

UTMEI(I) = EIUTM(I) * CFPT(FCUT(I)) / 100 / LFUTM(I)
$$I = 1, ..., NMUT$$

Energy consumption by mode:

ECUTM(I) = PKUTM(I) * UTMEI(I) * CF1 I = 1,....,NMUT

where: CF1 is the conversion factor from TWh to the energy unit specified in cell E50 of worksheet "Defs".

Energy consumption by fuel

Summing up only the urban PT modes using electricity:

ECUTF(1) = TELUT

$$= \sum_{I=1;(FCUT(I)=1)}^{NMUT} ECUTM(I)$$

Steam coal is not a valid fuel for urban PT in MAED_D model:

ECUTF(2) = TSCUT = 0

Summing up only the transportation modes using diesel oil:

ECUTF(3) = TDIUT
=
$$\sum_{I=1;(FCUT(I)=3)}^{NMUT}$$
 ECUTM(I)

Summing up only the urban PT modes using gasoline:

ECUTF(4) = TGAUT
=
$$\sum_{I=1;(FCUT(I)=4)}^{NMUT}$$
 ECUTM(I)

Summing up only the urban PT modes using fuel no. 5:

ECUTF(5) = TF5UT
=
$$\sum_{I=1;(FCUT(I)=5)}^{NMUT}$$
ECUTM(I)

Summing up only the urban PT modes using fuel no. 6:

ECUTF(6) = TF6UT
=
$$\sum_{I=1;(FCUT(I)=6)}^{NMUT}$$
ECUTM(I)

Summing up only the urban PT modes using fuel no. 7:

ECUTF(7) = TF7UT
=
$$\sum_{I=1;(FCUT(I)=7)}^{NMUT}$$
 ECUTM(I)

Summing up only the urban PT modes using fuel no. 8:

ECUTF(8) = TF8UT
=
$$\sum_{I=1;(FCUT(I)=8)}^{NMUT}$$
 ECUTM(I)

or, in general (total energy consumption of urban transportation modes using fuel no. J):

ECUTF(J) =
$$\sum_{I=1;(FCUT(I)=J)}^{NMUT} ECUTM(I)$$
 J = 1,...,NTF

TMFUT = TDIUT + TGAUT + TF5UT + TF6UT + TF7UT + TF8UT
=
$$\sum_{J=3}^{NTF}$$
 ECUTF(J) (total motor fuels)

Total final energy demand of urban (intracity) transportation subsector:

TENUT =
$$\sum_{I=1}^{NMUT} \text{ECUTM(I)}$$

= $\sum_{J=1}^{NTF} \text{ECUTF(J)}$
= TELUT + TMFUT

(b.2) Passenger, intercity

(see worksheet "PassInter-D" of MAED_D.xls)

Total passenger-kilometers, intercity traffic (10⁹ p-km):

PKI	=	PO * DI / 1000	
Out of which			
PKIC	=	(PO / CO) * DIC * LFCIT / 1000	(by car)
PKIP	=	PKI – PKIC	(by public modes)

Distribution by car type (10⁹ p-km):

PKICT(I)	= $PKIC * (SITC(I) / 100)$	I=1,, NCTIT
Distribution by	y public transportation mode (10^9 p-km) :	

PKIPM(I)	= PKIP * (SITM(I) / 100)	I=1,, NMIT -
		NCTIT

Energy intensity in units of kWh / passenger-kilometer:

Each passenger intercity transportation mode has assigned a fuel code number and a specific energy consumption (energy intensity) expressed in a natural unit chosen by the user per 100 kilometers (except air planes, for which the energy intensity is expressed in natural units per 1000 seat-kilometers). Each fuel has assigned a conversion factor from the natural unit for the energy intensity to kWh per passenger-kilometers. The following equations convert the energy intensity of intercity transportation mode I from selected natural unit per 100 kilometers (or 1000 seat-kilometers, in the case of air planes) to kWh/pkm, taking into consideration the fuel used by and the load factor of each particular transportation mode.

ITMEI(1)	= EIITM(1) / 1000 * CFPT(FCIT(1)) / (LFITM(1) / 100)	(air plane)
ITMEI(I)	= EIITM(I) / 100 * CFPT(FCIT(I)) / LFITM(I)	I = 2,, NMIT (other modes)

Energy consumption by mode:

ECITM(I) = PKITM(I) * ITMEI(I) * CF1

where: CF1 is the conversion factor from TWh to the energy unit specified in cell E50 of worksheet "Defs".

Energy consumption by fuel:

Summing up only the intercity PT modes using electricity:

ECITF(1) = TELIT

$$= \sum_{I=1;(FCIT(I)=1)}^{NMIT} ECITM(I)$$

I = 1,....,**NMIT**

Summing up only the intercity PT modes using steam coal:

ECITF(2) = TSCIT
=
$$\sum_{I=1;(FCIT(I)=2)}^{NMIT}$$
ECITM(I)

Summing up only the intercity PT modes using diesel:

ECITF(3) = TDIIT
=
$$\sum_{I=1;(FCIT(I)=3)}^{NMIT}$$
ECITM(I)

Summing up only the intercity PT modes using gasoline:

$$ECITF(4) = TGAIT$$

$$= \sum_{I=1;(FCIT(I)=4)}^{NMIT} ECITM(I)$$

Summing up only the intercity PT modes using fuel no. 5:

ECITF(5) = TF5IT
=
$$\sum_{I=1;(FCIT(I)=5)}^{NMIT}$$
ECITM(I)

Summing up only the intercity PT modes using fuel no. 6:

ECITF(6) = TF6IT

$$= \sum_{I=1;(FCIT(I)=6)}^{NMIT} ECITM(I)$$

Summing up only the intercity PT modes using fuel no. 7:

$$ECITF(7) = TF7IT$$

$$= \sum_{I=1;(FCIT(I)=7)}^{NMIT} ECITM(I)$$

Summing up only the intercity PT modes using fuel no. 8:

ECITF(8) = TF8IT

$$= \sum_{I=1;(FCIT(I)=8)}^{NMIT} ECITM(I)$$

or, in general total energy consumption of intercity PT modes using fuel no. J:

ECITF(J) =
$$\sum_{I=1;(FCIT(I)=J)}^{NMIT}$$
 ECITM(I) J = 1,...,NTF

TMFIT = TDIIT + TGAIT + TF5IT + TF6IT + TF7IT + TF8IT
=
$$\sum_{J=3}^{NTF}$$
 ECITF(J) (total motor fuels)

Total final energy demand of intercity passenger transportation sub-sector:

TENIT = $\sum_{I=1}^{NMIT}$ ECITM(I) = $\sum_{J=1}^{NTF}$ ECITF(J) = TELIT + TSCIT + TMFIT

(b.3) International and military transportation (Miscellaneous), demand for motor fuels

TMFMIS = CMFMIS(1) + CMFMIS(2) * Y * CF1

where: **CF1** is the conversion factor from TWh to the energy unit specified in cell E50 of worksheet "Defs".

(b.4) Passenger (including International and military) transportation totals

TELPT =	= TELUT + TELIT	(electricity)
TSCPT =	= TSCIT	(steam coal)
TMFPT =	= TMFUT + TMFIT + TMFMIS	(motor fuels)
TENPT =	= TELPT + TSCPT + TMFPT	(total final energy)

(c) Transportation sector totals (see worksheet "FIN_Trp-D" of MAED_D.xls)

Final energy demand by fuel:

ECTRF(1)	= TELTR	
	= TELFT + TELUT + TELIT = TELFT + TELPT	(electricity)
ECTRF(2)	 TSCTR TSCFT + TSCIT TSCFT + TSCPT 	(steam coal)

Note: Steam coal is not a valid fuel for urban passenger transportation in MAED_D model

ECTRF(3) = =	TDITR TDIFT + TDIUT + TDIIT	(diesel oil)
ECTRF(4) =	TGATR TGAFT + TGAUT + TGAIT	(gasoline)
ECTRF(5) = =	TF5TR TF5FT + TF5UT + TF5IT	(fuel no. 5)
ECTRF(6) = =	TF6TR TF6FT + TF6UT + TF6IT	(fuel no. 6)
ECTRF(7) = =	TF7TR TF7FT + TF7UT + TF7IT	(fuel no. 7)
ECTRF(8) = =	TF8TR TF8FT + TF8UT + TF8IT	(fuel no. 8)

or, in general:

$$ECTRF(J) = ECFTF(J) + ECUTF(J) + ECITF(J)$$
 $J=1,...,NTF$

Motor fuels for international and military transportation:

ECTRF(NTF+1)= TMFMIS

FINTR =
$$\sum_{J=1}^{NTF+1} \text{ECTRF}(J)$$
 (total final energy)

Fuel shares in Transportation sector totals (%):

$$ECTRF.S(J) = ECTRF(J) / FINTR * 100 \qquad J=1,...,NTF+1$$

Final energy demand by fuel group:

The demands for electricity (TELTR) and steam coal (TSCTR) are those previously calculated, while the total demand for motor fuels is:

TMFTR =
$$\sum_{J=3}^{NTF+1} \text{ECTRF}(J)$$

Fuel group shares in Transportation sector totals (%):

TELTR.S	= TELTR / FINTR * 100	(electricity)
TSCTR.S	= TSCTR / FINTR * 100	(steam coal)
TMFTR.S	= TMFTR / FINTR * 100	(motor fuels)
Sub sector sh	nares in Transportation sector totals (%):	
TENFT.S	= TENFT / FINTR * 100	(freight)
TENUT.S	= TENUT / FINTR * 100	(passenger, urban)

TENIT.S = T	'ENIT / FIN	TR * 100
---------------	-------------	----------

TMFMIS.S = TMFMIS / FINTR * 100

5.5.3 Household Sector

(a) Urban households

(a.1) Total number of urban dwellings (10⁶)

The number of urban dwellings is assumed to be equal to the number of urban households calculated in section 5.3 (Demographic Calculations).

TUDW = UHH

= **PO** * (**PURB** / 100) / **CAPUH**

(a.2) Useful energy demand for different categories of end-use (see Table 14.4 in worksheet "US HH Ur-D" of MAED D.xls)

Space heating (SH):

SHUHT(I)	= TUDW * (UDWSH / 100) * { (UDW(I) / 100) *	∗ UDWS(I)
	* (UAREAH(I) / 100) * UK(I) }	
	* UDD * 24 / 1000000 * CF1	I=1,, NUDT
		(urban dwelling
		type I)

SHUH	=	$\sum_{I=1}^{NUDT}$	SHUHT(I)
------	---	---------------------	----------

(total urban

dwellings)

Hot water (HW):

HWUH = TUDW * CAPUH * (UDWHW / 100) * UHWCAP * (CF1 / 1000)

Cooking (CK):

CKUH = TUDW * CKUDW * (CF1 / 1000)

<u>Air conditioning (AC):</u>

ACUHT(I) = TUDW * { (
$$UDW(I) / 100$$
) * ($UDWAC(I) / 100$)
* $UACDW(I)$ }* ($CF1 / 1000$)
I=1,....,NUDT
(urban dwelling
type I)

ACUH =
$$\sum_{I=1}^{NUDT}$$
 ACUHT(I) (total urban dwellings)

(passenger, intercity)

(international and military)

Specific electricity uses (appliances) - final energy (AP):

ELAPUH = TUDW * (ELPU / 100) * ELAPUDW * (CF1 / 1000)

Fossil fuels for lighting in non-electrified dwellings - final energy (LT):

FFLTUH = TUDW * (1 - ELPU / 100) * FFLTUDW * (CF1 / 1000)

Subtotal, Urban households:

USUH = SHUH + HWUH + CKUH + ACUH + ELAPUH + FFLTUH

In the previous equations, **CF1** is the conversion factor from TWh to the energy unit specified in cell E50 of worksheet "Defs".

(a.3) Conversion of useful energy to final energy demand in Urban households (see Tables 16.1 to 16.6 in worksheet "FIN HH-D" of MAED D.xls)

Space heating (SH):

TF.UH.SH	=	SHUH * (TFP.UH.SH / 100) / (TFE.UH.SH / 100)	(traditional fuels)
MB.UH.SH	=	SHUH * (MBP.UH.SH / 100) / (MBE.UH.SH / 100)	(modern biomass)
EL.UH.SH	=	SHUH * (ELP.UH.SH / 100) * (1 – (HPP.UH.SH / 100)	
		* (1 - 1 / HPE.UH.SH))	(electricity)
DH.UH.SH	=	SHUH * (DHP.UH.SH / 100)	(district heat)
SS.UH.SH	=	SHUH * (SSP.UH.SH / 100) * (FDS.UH.SH / 100)	(soft solar)
FF.UH.SH	=	SHUH * { (FFP.UH.SH / 100)+ (SSP.UH.SH / 100)	
		* (1 - FDS.UH.SH / 100) }/ (FFE.UH.SH / 100)	(fossil fuels)
FIN.UH.SH	=	TF.UH.SH + MB.UH.SH + EL.UH.SH + DH.UH.SH + SS.UH.SH + FF.UH.SH	(total)
<u>Hot water (H</u>	W):		
TF.UH.HW	=	HWUH * (TFP.UH.HW / 100) / (TFE.UH.HW / 100)	(traditional fuels)
MB.UH.HW	=	HWUH * (MBP.UH.HW / 100) / (MBE.UH.HW / 100)	(modern biomass)
EL.UH.HW	=	HWUH * (ELP.UH.HW / 100) * (1 – (HPP.UH.HW / 100) * (1 - 1 / HPE.UH.HW))	(electricity)
DH.UH.HW	=	HWUH * (DHP.UH.HW / 100)	(district heat)

SS.UH.HW	=	HWUH * (SSP.UH.HW / 100) * (FDS.UH.HW / 100)	(soft solar)
FF.UH.HW	=	HWUH * { (FFP.UH.HW / 100) + (SSP.UH.HW / 100) * (1 - FDS.UH.HW / 100) }/ (FFE.UH.HW / 100)	(fossil fuels)
FIN.UH.HW	=	TF.UH.HW + MB.UH.HW + EL.UH.HW + DH.UH.HW + SS.UH.HW + FF.UH.HW	(total)
Cooking (CK	<u>():</u>		
TF.UH.CK	=	CKUH * (TFP.UH.CK / 100) / (TFE.UH.CK / 100)	(traditional fuels)
MB.UH.CK	=	CKUH * (MBP.UH.CK / 100) / (MBE.UH.CK / 100)	(modern biomass)
EL.UH.CK	=	CKUH * (ELP.UH.CK / 100)	(electricity)
SS.UH.CK	=	CKUH * (SSP.UH.CK / 100) * (FDS.UH.CK / 100)	(soft solar)
FF.UH.CK	=	CKUH * { (FFP.UH.CK / 100) + (SSP.UH.CK / 100) * (1 - FDS.UH.CK / 100) }/ (FFE.UH.CK / 100)	(fossil fuels)
FIN.UH.CK	=	TF.UH.CK + MB.UH CK + EL.UH.CK + SS.UH.CK + FF.UH.CK	(total)
Air condition	ing	<u>(AC):</u>	
EL.UH.AC	=	ACUH * (ELP.UH.AC / 100) / ELE.UH.AC	(electricity)
FF.UH.AC	=	ACUH * (FFP.UH.AC / 100) / FFE.UH.AC	(fossil fuels)
FIN.UH.AC	=	EL.UH.AC + FF.UH.AC	(total)
Appliances a	nd li	ighting:	
EL.UH.AP	=	ELAPUH	(electricity)
FF.UH.AP	=	FFLTUH	(fossil fuels)
FIN.UH.AP	=	EL.UH.AP + FF.UH.LT	(total)
(a.4) Total f	ïnal	energy in Urban Household	
TFUH	=	TF.UH.SH + TF.UH.HW + TF.UH.CK	(traditional fuels)
MBUH	=	MB.UH.SH + MB.UH.HW + MB.UH.CK	(modern biomass)
ELUH	=	EL.UH.SH + EL.UH.HW + EL.UH.CK + EL.UH.AC + ELAPUH	(electricity)

DHUH	= DH.UH.SH + DH.UH.HW	(district heat)
SSUH	= SS.UH.SH + SS.UH.HW + SS.UH.CK	(soft solar)
FFUH	= FF.UH.SH + FF.UH.HW + FF.UH.CK + FF.UH.AC + FFLTUH	(fossil fuels)
FINUH	= TFUH + MBUH + ELUH + DHUH + SSUH + FFUH	(total final energy)

(b) Rural households

(b.1) Total number of rural dwellings (10⁶)

The number of rural dwellings is assumed to be equal to the number of rural households calculated in section 5.3 (Demographic Calculations).

TRDW = RHH

= **PO** * (**PRUR** / 100) / **CAPRH**

(b.2) Useful energy demand for different categories of end-use

(see Table 15.4 in worksheet "US_HH_Rr-D" of MAED_D.xls)

Space heating (SH):

SHRHT(I) = TRDW * (**RDWSH** / 100) * { (**RDW(I)** / 100) * **RDWS(I)**

* (**RAREAH(I**) / 100) * **RK(I**) }* **RDD** * 24 / 1000000 * **CF1**

I=1,....,**NRDT** (rural dwelling type I)

		NRDT	
SHRH	=	\sum	SHRHT(I)
		I=1	

(total rural

dwellings)

Hot water (HW):

HWRH = TRDW * CAPRH * (RDWHW / 100) * RHWCAP * (CF1 / 1000)

Cooking (CK):

CKRH = TRDW * CKRDW * (CF1 / 1000)

<u>Air conditioning (AC):</u>

ACRHT(I) = TRDW * { (**RDW(I)** / 100) * (**RDWAC(I)** / 100) * **RACDW(I)** } * (**CF1** / 1000) I=1,....,**NRDT**

(rural dwelling type I)

ACRH =
$$\sum_{I=1}^{NRDT} ACRHT(I)$$

(total rural

dwellings)

Electricity specific uses (appliances) - final energy (AP):

ELAPRH = TRDW * (ELPR / 100) * ELAPRDW * (CF1 / 1000)

Fossil fuels for lighting in non-electrified dwellings - final energy (LT):

FFLTRH = TRDW * (1 - ELPR / 100) * FFLTRDW * (CF1 / 1000)

Subtotal, Rural households:

USRH = SHRH + HWRH + CKRH + ACRH + ELAPRH + FFLTRH

In the previous equations, **CF1** is the conversion factor from TWh to the energy unit specified in cell E50 of worksheet "Defs".

(b.3) Conversion of useful energy to final energy demand in Rural households (see Tables 16.7 ÷ 16.12 in worksheet "FIN HH-D" of MAED D.xls)

Space heating (SH):

TF.RH.SH	=	SHRH * (TFP.RH.SH / 100) / (TFE.RH.SH / 100)	(traditional fuels)
MB.RH.SH	=	SHRH * (MBP.RH.SH / 100) / (MBE.RH.SH / 100)	(modern biomass)
EL.RH.SH	=	SHRH * (ELP.RH.SH / 100) * (1 – (HPP.RH.SH / 100) * (1 - 1 / HPE.RH.SH))	(electricity)
DH.RH.SH	=	SHRH * (DHP.RH.SH / 100)	(district heat)
SS.RH.SH	=	SHRH * (SSP.RH.SH / 100) * (FDS.RH.SH / 100)	(soft solar)
FF.RH.SH	=	SHRH * { (FFP.RH.SH / 100) + (SSP.RH.SH / 100) * (1 - FDS.RH.SH / 100) } / (FFE.RH.SH / 100)	(fossil fuels)
FIN.RH.SH	=	TF.RH.SH + MB.RH.SH + EL.RH.SH + DH.RH.SH + SS.RH.SH + FF.RH.SH	(total)
Hot water (H	W):		
TF.RH.HW	=	HWRH * (TFP.RH.HW / 100) / (TFE.RH.HW / 100)	(traditional fuels)
MB.RH.HW	=	HWRH * (MBP.RH.HW / 100) / (MBE.RH.HW / 100)	(modern biomass)
EL.RH.HW	=	HWRH * (ELP.RH.HW / 100) * (1 – (HPP.RH.HW / 100) * (1 - 1 / HPE.RH.HW))	(electricity)

DH.RH.HW	=	HWRH * (DHP.RH.HW / 100)	(district heat)
SS.RH.HW	=	HWRH * (SSP.RH.HW / 100) * (FDS.RH.HW / 100)	(soft solar)
FF.RH.HW	=	HWRH * { (FFP.RH.HW / 100) + (SSP.RH.HW / 100) * (1 - FDS.RH.HW / 100) } / (FFE.RH.HW / 100)	(fossil fuels)
FIN.RH.HW	=	TF.RH.HW + MB.RH.HW + EL.RH.HW + DH.RH.HW + SS.RH.HW + FF.RH.HW	(total)
Cooking (CK	<u>():</u>		
TF.RH.CK	=	CKUH * (TFP.RH.CK / 100) / (TFE.RH.CK / 100)	(traditional fuels)
MB.RH.CK	=	CKUH * (MBP.RH.CK / 100) / (MBE.RH.CK / 100)	(modern biomass)
EL.RH.CK	=	CKUH * (ELP.RH.CK / 100)	(electricity)
SS.RH.CK	=	CKUH * (SSP.RH.CK / 100) * (FDS.RH.CK / 100)	(soft solar)
FF.RH.CK	=	CKUH * { (FFP.RH.CK / 100) + (SSP.RH.CK / 100)	
		* (1 - FDS.RH.CK / 100) } / (FFE.RH.CK / 100)	(fossil fuels)
FIN.RH.CK	=	TF.RH.CK + MB.RH CK + EL.RH.CK + SS.RH.CK + FF.RH.CK	(total)
Air condition	ing	<u>(AC):</u>	
EL.RH.AC	=	ACRH * (ELP.RH.AC / 100) / ELE.RH.AC	(electricity)
FF.RH.AC	=	ACRH * (FFP.RH.AC / 100) / FFE.RH.AC	(fossil fuels)
FIN.RH.AC	=	EL.RH.AC + FF.RH.AC	(total)
Appliances a	nd li	ighting:	
EL.RH.AP	=	ELAPRH	(electricity)
FF.RH.AP	=	FFLTRH	(fossil fuels)
FIN.RH.AP	=	EL.RH.AP + FF.RH.LT	(total)
(b.4) Total f	inal	energy in Rural Household	
TFRH	=	TF.RH.SH + TF.RH.HW + TF.RH.CK	(traditional fuels)
MBRH	=	MB.RH.SH + MB.RH.HW + MB.RH.CK	(modern biomass)
ELRH	=	EL.RH.SH + EL.RH.HW + EL.RH.CK	
		+ EL.RH.AC + ELAPRH	(electricity)
DHRH	=	DH.RH.SH + DH.RH.HW	(district heat)

SSRH	=	SS.RH.SH + SS.RH.HW + SS.RH.CK	(soft solar)		
FFRH	=	FF.RH.SH + FF.RH.HW + FF.RH.CK	(fassil fuels)		
FINRH	=	+ FF.KH.AC + FFLTRH TFRH + MBRH + ELRH + DHRH + SSRH + FFRH	(total final energy)		
 (c) Final energy demand of Household sector (urban + rural) (see Tables 16.13 to 16.18 in worksheet "FIN_HH-D" of MAED_D.xls) 					
Space heating	<u>g (S</u>	<u>H):</u>			
TF.HH.SH	=	TF.UH.SH + TF.RH.SH	(traditional fuels)		
MB.HH.SH	=	MB.UH.SH + MB.RH.SH	(modern biomass)		
EL.HH.SH	=	EL.UH.SH + EL.RH.SH	(electricity)		
DH.HH.SH	=	DH.UH.SH + DH.RH.SH	(district heat)		
SS.HH.SH	=	SS.UH.SH + SS.RH.SH	(soft solar)		
FF.HH.SH	=	FF.UH.SH + FF.RH.SH	(fossil fuels)		
FIN.HH.SH	=	TF.HH.SH + MB.HH.SH + EL.HH.SH + DH.HH.SH + SS.HH.SH + FF.HH.SH			
	=	FIN.UH.SH + FIN.RH.SH	(total)		
<u>Hot water (H</u>	W):				
TF.HH.HW	=	TF.UH.HW + TF.RH.HW	(traditional fuels)		
MB.HH.HW	=	MB.UH.HW + MB.RH.HW	(modern biomass)		
EL.HH.HW	=	EL.UH.HW + EL.RH.HW	(electricity)		
DH.HH.HW	=	DH.UH.HW + DH.RH.HW	(district heat)		
SS.HH.HW	=	SS.UH.HW + SS.RH.HW	(soft solar)		
FF.HH.HW	=	FF.UH.HW + FF.RH.HW	(fossil fuels)		
FIN.HH.HW	=	TF.HH.HW + MB.HH.HW + EL.HH.HW + DH.HH.HW + SS.HH.HW + FF.HH.HW			
	=	FIN.UH.HW + FIN.RH.HW	(total)		
Cooking (CK	<u>):</u>				
TF.HH.CK	=	TF.UH.CK + TF.RH.CK	(traditional fuels)		
MB.HH.CK	=	MB.UH.CK + MB.RH.CK	(modern biomass)		
EL.HH.CK	=	EL.UH.CK + EL.RH.CK	(electricity)		

SS.HH.CK	= SS.UH.CK + SS.RH.CK	(soft solar)
FF.HH.CK	= FF.UH.CK + FF.RH.CK	(fossil fuels)
FIN.HH.CK	= TF.HH.CK + MB.HH.CK + EL.HH.CK + SS.HH.CK + FF.HH.CK	
	= FIN.UH.CK + FIN.RH.CK	(total)
Air condition	ning (AC):	
EL.HH.AC	= EL.UH.AC + EL.RH.AC	(electricity)
FF.HH.AC	= FF.UH.AC + FF.RH.AC	(fossil fuels)
FIN.HH.AC	= EL.HH.AC + FF.HH.AC	
	= FIN.UH.AC + FIN.RH.AC	(total)
Appliances a	and lighting:	
EL.HH.AP	= EL.UH.AP + EL.RH.AP	(electricity)
FF.HH.AP	= FF.UH.LT + FF.RH.LT	(fossil fuels)
FIN.HH.AP	= EL.HH.AP + EL.HH.AP= FIN.UH.AP + FIN.RH.AP	(total)
Total final er	nergy in Household sector:	
TFHH	TF.HH.SH + TF.HH.HW + TF.HH.CKTFUH + TFRH	(traditional fuels)
МВНН	MB.HH.SH + MB.HH.HW + MB.HH.CKMBUH + MBRH	(modern biomass)
ELHH	= EL.HH.SH + EL.HH.HW + EL.HH.CK + EL.HH.AC + ELAPHH	
	= ELUH + ELRH	(electricity)
DHHH	= DH.HH.SH + DH.HH.HW	
	= DHUH+ DHRH	(district heat)
SSHH	= SS.HH.SH + SS.HH.HW + SS.HH.CK= SSUH + SSRH	(soft solar)
FFHH	= FF.HH.SH + FF.HH.HW + FF.HH.CK + FF.HH.AC + FFLTHH	
	= FFUH + FFRH	(fossil fuels)

FINH	Η	=	TFHH + MBHH + ELHH + DHHH + SSHH + FFHH FINUH + FINRH	(total final energy)
5.5.4	Servic	e se	ector	
(a)	Service (see Tat	sec	tor labor force (10 ⁶) and floor area (10 ⁶ sq.m) 17-1 of worksheet "US_SS-D" of MAED_D.xls)	
LSER		=	ALF * (PLSER / 100)	(labour force)
TAR	EA	=	LSER * AREAL	(floor area)
(b)	Useful a (see Tab	e ne i oles	rgy demand for different categories of end-use 17-3 and 17-7 to 17-10 of worksheet "US_SS-D" of MAE	D_D.xls)
Space	e heating	(SI	<u>H):</u>	
TARS	SH	=	TAREA * (ARSH / 100) * (AREAH / 100)	(floor area where SH) is required)
US.SI	H.SER	=	TARSH * SSHR * (CF1 / 1000)	
Air co	onditioni	ng	<u>(AC):</u>	
US.A	C.SER	=	TAREA * (AREAAC / 100) * SACR * (CF1 / 1000)	
Moto	r fuels (N	MF)	<u></u>	
US.M	F.SE(I)	=	EI.MF.SE(I) * YSE(I) * CF1	I=1,, NSSER (subsector I)
MFSE	ER	=	US.MF.SER	
		=	$\sum_{I=1}^{NSSER} \text{ US.MF.SE(I)}$	
		=	$\sum_{I=1}^{NSSER} (EI.MF.SE(I) * YSE(I)) * CF1$	(entire sector)
Elect	ricity for	spe	ecific uses (ELS):	
US.EI	LS.SE(I)	=	EI.ELS.SE(I) * YSE(I) * CF1	I=1,,NSSER (subsector I)
ELSS	ER	=	US.ELS.SER	
		=	$\sum_{I=1}^{NSSER} \text{ US.ELS.SE(I)}$	
		=	$\sum_{I=1}^{NSSER} (EI.ELS.SE(I) * YSE(I)) * CF1$	(entire sector)

Other thermal uses (OTU):

US.OTU.SE(I) = **EI.OTU.SE(I)** * YSE(I) * **CF1**

I=1,..,**NSSER** (subsector I)

US.OTU.SER =
$$\sum_{I=1}^{NSSER}$$
 US.OTU.SE(I)
= $\sum_{I=1}^{NSSER}$ (EI.OTU.SE(I) * YSE(I)) * CF1 (entire sector)

Total useful energy:

US.SER = US.SH.SER + US.AC.SER + MFSER + ELSSER + US.OTU.SER

In the previous equations, **CF1** is the conversion factor from TWh to the energy unit specified in cell E50 of worksheet "Defs".

(c) Conversion of useful thermal to final energy demand

Space heating and other thermal uses:

TF.SER.TU	=	{ US.SH.SER * (TFP.SER.SH / 100) + US.OTU.SER * (TFP.SER.OUT / 100) } / (TFE.SER.TU / 100)	(traditional fuels)
MB.SER.TU	=	{ US.SH.SER * (MBP.SER.SH / 100) + US.OTU.SER * (MBP.SER.OUT / 100) } / (MBE.SER.TU / 100)	(modern biomass)
EL.SER.TU	=	US.SH.SER * (ELP.SER.SH / 100) * { 1 - (HHP.SER.SH / 100) * (1 - (1 / HPE.SER.SH)) } + US.OTU.SER * (ELP.SER.OTU / 100)	(electricity)
DH.SER.TU	=	US.SH.SER * (DHP.SER.SH / 100) + US.OTU.SER * (DHP.SER.OUT / 100)	(district heat)
SS.SER.TU	=	{ US.SH.SER * (SSP.SER.SH / 100) + US.OTU.SER * (SSP.SER.OUT / 100) } * (FDS.SER.TU / 100) * (PLB / 100)	(soft solar)
FF.SER.TU	=	US.SH.SER * { (FFP.SER.SH / 100) + (SSP.SER.SH / 100) * (1 - (FDS.SER.TU / 100)) * (PLB / 100) } / (FFE.SER.TU / 100) + US.OTU.SER * { (FFP.SER.OTU / 100) + (SSP.SER.OTU / 100) * (1 - (FDS.SER.TU / 100)) * (PLB / 100) } / (FFE.SER.TU / 100)	(fossil fuels)
FIN.SER.TU	=	TF.SER.TU + MB.SER.TU + EL.SER.TU + DH.SER.TU + SS.SER.TU + FF.SER.TU	(total)

Air conditioning:

EL.SER.AC	=	US.AC.SER * (ELP.SER.AC / 100) / ELE.SER.AC	(electricity)
FF.SER.AC	=	US.AC.SER * (FFP.SER.AC / 100) / FFE.SER.AC	(fossil fuels)
FIN.SER.AC	=	EL.SER.AC + FF.SER.AC	(total)
(d)	T	otal final energy in Service sector	
TFSER	=	TF.SER.TU	(traditional fuels)
MBSER	=	MB.SER.TU	(modern biomass)
ELSER	=	ELSSER + EL.SER.TU + EL.SER.AC	(electricity)
DHSER	=	DH.SER.TU	(district heat)
SSSER	=	SS.SER.TU	(soft solar)
FFSER	=	FF.SER.TU + FF.SER.AC	(fossil fuels)
FINSER	=	MFSER + TFSER + MBSER + ELSER + DHSER + SSSER + FFSER	(total)

5.5.5 Grand totals of final energy demand for the country

Once all final energy demand calculations by sector have been completed, the program proceeds to calculate grand totals for the country as the addition of the sectoral demands. The results of these calculations, expressed in the energy unit specified in cell E50 of worksheet "Defs", are shown in worksheet "Final-D" of MAED_D.xls.

Demand by energy form:

TF	= TFIND + TFHH + TFSER	(traditional fuels)
MB	= MBIND + MBHH + MBSER	(modern biomass)
ELTU	= ELHIND + EL.HH.SH + EL.HH.HW + EL.HH.CK + EL.SER.TU	(electricity for thermal uses)
ELNTU	= ELSIND + TELTR+ EL.HH.AC + ELAPHH + ELSSER + EL.SER.AC	(electricity for non-thermal uses)
ELEC	= ELIND + TELTR + ELHH + ELSER	
	= ELTU + ELNTU	(total electricity)
DH	= DHIND + DHHH + DHSER	(district heat)
SS	= SSIND + SSHH + SSSER	(soft solar)
FF	= FFIND + FFHH + FFSER	(fossil fuels)

MF	= MFI	ND + TMFTR + MFSER	(motor fuel)
Coalsp	= COF	KE + TSCTR	(coal, specific)
TFEED	= FEE	D	(feedstock)
FINEN	= TF - + TF	- MB + ELEC + DH + SS + FF + MF + COALSP FEED	(total final energy)
Final energy	er capita	a (MWh/cap):	
FINEN.CAP	= (FI	NEN / PO) / CF1	

Final energy intensity i.e. final energy per monetary unit of GDP (kWh/MU):

EI.FIN.GDP = (FINEN / Y) / CF1

where: CF1 is the conversion factor from TWh to the energy unit specified in cell E50 of worksheet "Defs".

Several different aggregations of the individual energy demands by form and by sector are performed by the program in order to present the output tables with the results of the run. As these aggregations do not involve any new calculations, they are not presented here.

In order to convert the grand totals of final energy demand for the country from the energy unit specified in cell E50 of worksheet "Defs" to another energy unit the user have to indicate the new unit and the corresponding conversion factor in cells L50 and M50 of worksheet "Defs". The grand totals of final energy demand from worksheet "Final-D", converted to the new energy unit, will be shown in worksheet "Final Results (User Unit)".

6 GENERAL DESCRIPTION OF MAED MODULE 2

HOURLY ELECTRIC POWER DEMAND CALCULATIONS

6.1 Introduction

The second Module of MAED has been developed to convert the annual electricity demand for each economic sector (considered for demand projection in Module 1) to the hourly electricity demand during the year. This Module considers four economic sectors, namely Industry, Transport, Household and Service and six clients for each of these sectors for calculation of hourly electricity demand.

Various modulation factors are used to calculate the hourly demand from the annual electricity demand. These factors characterize the changes in the electricity consumption with respect to the average electricity consumption during a year, week or a day. This module converts the total annual electricity demand of a sector to the electricity load of the sector in a giver hour, day and week of the year by taking into account the following factors:

- (i) The trend of the average growth rate of the electricity demand during the year;
- (ii) The changes in the level of electricity consumption owing to the various seasons of the year (this variation is reflected on a weekly basis in this Module);
- (iii) The changes in the level of electricity consumption owing to the type of day being considered (i.e. working days, weekends, special holidays etc.);
- (iv) The hourly variation of electricity consumption during a particular type of day.

The trend of average growth rate of electricity demand is already known from the results of Module 1. The variation of electricity load of a given sector by hour, day and week is characterized by three sets of modulation coefficients that are defined for 24 hours in a day, by type of days in a week and for each week in a year. The product of all of these coefficients, along with the coefficients for the average growth rate of electricity demand, multiplied by the average electricity demand of a particular sector result in the electric load of that sector in a particular hour. Knowing all these coefficients for a particular year allows us to calculate the chronological hourly electricity load for 8760 hours of that year.

Similar calculations are repeated for each sector of the economy (Industry, Transport, Household and Service) and the loads for same hour in all sectors are aggregated together to produce the hourly load values of the total load imposed on the power system in a particular year. The graphical representation of these hourly loads in decreasing order produces the well-known hourly load duration curve for the electric power system.

The modulation coefficients used for these calculations are obtained from statistical analysis based on the past operating experience for the power system under consideration.

This section of the User's Manual describes various worksheets of the Microsoft Excel workbook file <**MAED_El.xls**> designed for MAED Module 2 calculations, procedure for execution of this Module and theoretical approach used for these calculations.

6.2 Description of MAED module 2 Excel worksheets

A separate workbook file has been designed to prepare input data, calculation of the hourly loads and presentation of the model results of Module 2. This Microsoft Excel file is named as

<**MAED_El.xls**> and is present in the same directory where the other MAED file, for Module 1, <**MAED_D.xls**> is located.

The Microsoft Excel workbook file consists of 20 worksheets. Some of these worksheets provide general information related to the terminology and color codes used in the worksheets, while the other worksheets are used to prepare input data and to display the results of the model in numerical as well as graphical form. Microsoft Visual Basic subroutines have been used in the Microsoft Excel environment for validation of input data, calculation and presentation of the model results. Names of various worksheets present in the Microsoft Excel Workbook file <**MAED_El.xls**> used for calculations related to Module 2 of MAED are given in Table 6.1.

Worksheet No.	Name of worksheet	Content of worksheet
i	MAED_EL	Title page of the workbook
ii	Notes	Colour code conventions
iii	Descr	Short description of the module
iv	ТОС	Table of contents
v	Calendar	Calendar of the reference years
vi	FinEle	Final electricity demand
vii	SecEle	Secondary electricity demand
viii	Ldfac(1)	Load modulation coefficients for Industry
ix	Ldfac(2)	Load modulation coefficients for Transport
X	Ldfac(3)	Load modulation coefficients for Household
xi	Ldfac(4)	Load modulation coefficients for Service
xii	Check	Check modulation coefficient correctness
xiii	LDC	Load duration curves in numerical form
xiv	LDC-G	Load duration curves in graphical form
XV	ChrtLdc	Chronological load data
xvi	SvFac(1)	Save load modulation coefficients for Industry
xvii	SvFac(2)	Save load modulation coefficients for Transport
xviii	SvFac(3)	Save load modulation coefficients for Household
xix	SvFac(4)	Save load modulation coefficients for Service
XX	temp	Temporarily stored data during program execution

Table 6.1: List of W	orksheets in M	licrosoft Excel	Workbook file	<maed< th=""><th>El.xls></th></maed<>	El.xls>

The description of each of these worksheets is given in the following paragraphs.

(i) Worksheet "MAED_EL"

This is the title worksheet, which shows the title of the workbook file. Figure 6.1 gives the snapshot of this worksheet.

Figure 6.1. Snapshot of worksheet "MAED_EL.

(ii) Worksheet "Notes"

This worksheet contains notes about the color convention used in various worksheets and some general comments about data entry. Figure 6.2 shows the snapshot of this worksheet

Data in white fields can be changed numerically in the Calendar, LdFac(1), and LdFac(2) sheets. Fields colored orange are derived values and cannot be changed.

Figure 6. 2. Snapshot of worksheet "Notes".

(iii) Worksheet "Descr"

This worksheet provides general description of the electricity demand projection scenario and some other information about the workbook file. A snapshot of this worksheet is shown in Figure 6.3.

Description:	
Country Devices	
Country/Region:	CASENB
Scenario Number:	1
Scenario Name:	low
Brief scenario description:	Low GDP growth
Project name:	Modernization of MEAD
	0
Purpose:	Training for experts
Author:	Manfred Strubegger
Date of origin:	1999-03-01
Design notes:	Based on the original sample scenario for CASENA in:
	Model for Analysis of the Energy Demand (MAED)
	User's Manual for Version MAED-1
Date of last change:	2002-01-07
Change description:	extension based on ideas and work by Alaa Khatib in maed_el
	load distribution for 4 sectors separately, check of load region sums
Description and Notes:	0
	0
	0
	0
	0
	0
	0

Figure 6.3. Snapshot of worksheet "Descr".

(iv) Worksheet "TOC"

Table of contents of the overall workbook is given in this worksheet. A view of this worksheet is shown in Figure 6.4. The user can move to various worksheets by clicking the respective buttons available in this worksheet. Most of the worksheets also have a TOC button that can be clicked to move back to "TOC" worksheet.

Tab	le of Contents:			
		Data sheets	Graphics	Table nr.
1	Notes	Notes		
2	Description	Descr		
3	Final Electricity	FinEle		1
4	Secondary Electricity	SecEle		2
5	Load patterns for Industry	LdFac(1)		3
6	Load patterns for Transport	LdFac(2)		4
7	Load patterns for Households	LdFac(3)		5
8	Load patterns for Services	LdFac(4)		6
9	Load duration curves (total)	LDC	LDC-G	7
10	Intermediate values	LDC(2)		8

Figure 6.4. A view of worksheet "TOC".

(v) Worksheet "Calendar"

This worksheet contains information related to the annual official holidays, duration of the four seasons (winter, spring, summer and autumn) in terms of their starting and ending dates used for the study, starting and ending dates of special season during each year and definitions of normal and typical weekdays. Figures 6.5, 6.6 and 6.7 show the snapshots of different parts of this worksheet.

Holic	lays:		
Year	Description	every week	single days
1970	free special	Fri	1-Jan
1975	free special	Fri O	
1980	free special	Fri O	
1985	free special	Fri O	
1990	free special	Fri O	
1995	free special	Fri O	
2000	free special	Fri O	
2005	free special	Fri O	
2010	free special	Fri O	

Figure 6.5. Definition of holidays in worksheet "Calendar".

(vi) Worksheet "FinEle"

This worksheet consists of total and sector-wise electricity demand along with the sectoral shares and growth rates for the base year as well as those for the future years worked out by Module 1 of MAED (Microsoft Excel file <maed_d.xls>). Figure 6.8 shows the total and sectoral final electricity demand during the study period.

Seaso	ons (starti	ng days)							
season	1970	1975	1980	1985	1990	1995	2000	2005	2010
winter	1-Jan	1-Jan	1-Jan	1-Jan	1-Jan	1-Jan	1-Jan	1-Jan	1-Jan
spring	21-Mar	21-Mar	21-Mar	21-Mar	21-Mar	21-Mar	21-Mar	21-Mar	21-Mar
summer	21-Jun	21-Jun	21-Jun	21-Jun	21-Jun	21-Jun	21-Jun	21-Jun	21-Jun
autumn	23-Sep	23-Sep	23-Sep	23-Sep	23-Sep	23-Sep	23-Sep	23-Sep	23-Sep
winter	22-Dec	22-Dec	22-Dec	22-Dec	22-Dec	22-Dec	22-Dec	22-Dec	22-Dec
	31-Dec	31-Dec	31-Dec	31-Dec	31-Dec	31-Dec	31-Dec	31-Dec	31-Dec
Speci	al Seasor	1:	Rama	dan					
season	1970	1975	1980	1985	1990	1995	2000	2005	2010
start	9-Jan	9-Jan	9-Jan	9-Jan	9-Jan	9-Jan	9-Jan	9-Jan	9-Jan
end	20-Jan	20-Jan	20-Jan	20-Jan	20-Jan	20-Jan	20-Jan	20-Jan	20-Jan

Figure 6.6. Duration of different seasons and starting & ending dates in worksheet "Calendar".

Days:							
Definition	n of norm	al weekday	ys:				
	1	2	3	4	5	6	7
all	Sat	Sun	Mon	Tue	Wed	Thu	Fri
Definition	n of typica	l weekday	/s:				
	1	2	3	4	5	6	7
reduced	Sat	Sun	Mon	Tue	Wed	Thu	Fri

Figure 6.7. Definition of normal and special weekdays in worksheet "Calendar".

Table 1: Elec	Table 1: Electricity Demand during the Year (CASENB/low):										
Table 1a: Final Electricity Consumption (from MAED-1):											
	unit	1970	1975	1980	1985	1990	1995	2000	2005		
Industry	GWa	0.55	0.81	1.39	2.07	2.87	3.52	4.07	4.75		
Transport	GWa	0.00	0.00	0.03	0.05	0.08	0.11	0.17	0.23		
Households	GWa	0.16	0.27	0.46	0.66	0.99	1.35	2.01	2.62		
Services	GWa	0.11	0.18	0.31	0.44	0.63	0.86	1.11	1.42		
Total	GWa	0.83	1.26	2.20	3.22	4.56	5.84	7.38	9.02		

Figure 6-8. Total and sectoral final electricity demand in worksheet "FinEle".

Figures 6.9 and 6.10 show sections of this worksheet giving the shares and growth rates of different clients in the industrial sector. Similar tables are also present in the worksheet for transport, households and services sectors. At the end of the worksheet, the aggregated electricity demand for Industry & transport and Households & services sector are also given. This section of the worksheet is shown in Figure 6.11. Two graphs are also present in the worksheet to show the evolution of electricity demand over the study period and its growth rates by sector shown in Figures 6.12 and 6.13.

Table 1a1a:	Share of indu	istrial clie	ents:						
	unit	1970	1975	1980	1985	1990	1995	2000	2005
ind1	%	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	%	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00

Figure 6-9. Shares of industrial clients in worksheet "FinEle".

Table 1a1b:	Growth rates	ofindus	trial clie	nts:					
	unit	1970	1975	1980	1985	1990	1995	2000	2005
ind1	[%p.a.]	8.22	8.22	11.39	8.24	6.74	4.19	2.96	3.10
	[%p.a.]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	[%p.a.]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	[%p.a.]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	[%p.a.]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	[%p.a.]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	[%p.a.]	8.22	8.22	11.39	8.24	6.74	4.19	2.96	3.10

Figure 6-10. Growth rates of industrial clients in worksheet "FinEle".

Table 1b: Tota	al growth rat	es:							
1	unit	1970	1975	1980	1985	1990	1995	2000	2005
Ind+Trp	[%p.a.]	9.31	8.38	11.58	8.27	6.79	4.28	3.18	3.22
Hh+Service	[%p.a.]	9.50	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Total	[%p.a.]	9.32	8.96	11.51	7.98	7.18	5.06	4.79	4.11

Figure 6-11. Total sectoral growth rates in worksheet "FinEle".

Figure 6.12. Graph of evolution of electricity demand in worksheet "FinEle".

Figure 6.13. Graph of total and sectoral electricity growth rates in worksheet "FinEle".

Table 2: Ele	ctricity D	emand	during	the Y	ear (C	ASENE	B/low):		
Table 2a:Trans	mission lo	sses:							
	unit	1970	1975	1980	1985	1990	1995	2000	2005
transmlosses	%	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Table 2b1: Dis	tribution lo	sses:							
	unit	1970	1975	1980	1985	1990	1995	2000	2005
Industry	%	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Transport	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Households	%	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
Services	%	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00
Table 2b2: Hig	hest peak:								
	unit	1970	1975	1980	1985	1990	1995	2000	2005
multiplier	[%]	10.00	9.04	8.17	7.39	6.68	6.03	5.45	4.93
addition	[MW]	100.00	50.00	0.00	0.00	0.00	0.00	0.00	0.00
duration	[h]	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00

Figure 6.14. Transmission and distribution losses and information about the peak load in worksheet "SecEle".

(vii) Worksheet "SecEle"

This worksheet contains the input data about the total transmission losses at the system level and sectoral distribution losses on annual basis during the study period. The section of the worksheet including these data is shown in Figure 6.14. Some details of the peak loads are also present in this worksheet and is also shown in Figure 6.14. This information is used to adjust the peak load if it does not match with the actual values experienced in the country. At the end of the worksheet, the electricity requirements, including the transmission and distribution losses, are reported as the secondary electricity requirements as shown in Figure 6.15.

Table 1c1: Se	condary Ele	ectricity r	equirem	ents [G	Wa]:				
	unit	1970	1975	1980	1985	1990	1995	2000	2005
Industry	GWa	0.61	0.90	1.54	2.29	3.18	3.90	4.51	5.26
Transport	GWa	0.00	0.00	0.03	0.05	0.08	0.12	0.18	0.24
Households	GWa	0.22	0.36	0.61	0.87	1.30	1.78	2.65	3.45
Services	GWa	0.14	0.22	0.38	0.54	0.78	1.06	1.38	1.76
Total	GWa	0.96	1.48	2.57	3.77	5.34	6.86	8,73	10.71
		FALSE			[
Table 2c1: Se	condary Ele	ectricity r	equirem	ents [G	Wh]:				
	unit	1970	1975	1980	1985	1990	1995	2000	2005
Industry	GWh	5311	7884	13557	20086	27837	34172	39654	46057
Transport	GWh	0	0	299	475	720	1035	1603	2129
Households	GWh	1891	3130	5352	7657	11399	15551	23276	30233
Services	GWh	1243	1937	3353	4766	6792	9294	12122	15425
Total	GWh	8444	12952	22561	32984	46747	60051	76655	93844

Figure 6.15. Electricity requirements including transmission & distribution losses in worksheet "SecEle".

(viii) Worksheet "LdFac(1)"

This worksheet contains the input data of seasonal, daily and hourly load modulation coefficients for the Industrial sector. The information can be provided for each (at maximum 6) client and for different reference years considered over the study period. These data are provided for the base year and can be modified for the future years of the study period if desired so by the user.

Figure 6.16 shows a part of the seasonal coefficients and daily ponderation coefficients and the control buttons provided to input these data. The cells of the worksheet having marked with borders are the daily coefficients of the first day of months as shown in this Figure by comment boxes. Various control buttons are present in this part of the worksheet to show these data in graphical form, to clear data and to normalize these data. A button "Check" is meant for validation of the input data. If the data for a certain year is not valid, the color of the cell showing the sum of the column or row is changed to "Red" indicating a warning message to the user.

Tab	0.2.1	hea	Cast	Hiald	inte	forl	ndu	-t	(0.4)	CEN	Piles									L	01	Feb	203	0	10
able	e 3a: An	nual	and w	reekh	y coe	fficie	nts (s	ee co	olor c	odes	at en	v). d of s	heet;)			Che	ck				/	/-	10	
20)30	Sh Cl N	show for se	lected show	data vear save		Show Close Norm	Graph Graph alize v			7														
veek	season	1970	1975	1980	1985	1990	1995	2000	2005	2010	20,15	2020	2025	2030	Sat	Sun	Mon	Tue	Wed	Thu	R	Total			
1	winter	1.01	1.60	1.02	1.50	1.02	1.50	1.02	1.02	1.02	1.02	1.02	1.02	1.02	0.98	0.00	1.01	1.02	1.11	1.07	0.98	7.00	Sh	CI	N
2	winter	1.02	1.61	1.03	1.61	1.03	1.61	1.03	1.03	1.03	1.03	1.03	1.03	1.03	0.98	0.09	1.01	1.02	1.01	1/02	0.98	7.00	Sh	CI	1
3	winter	1.03	1.60	0.98	1.80	1.05	1.60	1.05	1.05	1.05	0.95	1.05	1.05	1.05	0.99	1.00	0.99	1.00	1.00	1.02	0,90	7.00	Sh	CI	1
4	winter	0.94	1.40	0.98	1.40	0.99	1.40	1.00	0.96	0.98	0.96	0.96	0.98	0.96	1.00	1.11	0.98	0.94	0.98	0.99	1.00	8.98	Sh	CI	1
5	winter	1.00	1.66	1.02	1.86	1.02	1.66	1.02	1.02	1.02	1.02	1.02	1.02	1.02	0.96	0.99	1.00	1.00	1.04	1,04	0.96	7.00	Sh	CI	1
6	winter	0.99	1.59	1.00	1.59	1.00	1.59	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.01	0.99	1.00	1.00	1.01		7.00	Sh	CI	,
7	winter	0.99	1.34	1.01	1.34	1.01	1.34	1.01	1.01	1.01	1.01	1.01	1.01	1.01	0.94	1.03	1.03	1.04	0.65	1.02	0.94	8.85	Sh	CI	
8	winter	0.95	1.20	0.97	1.20	0.97	1.20	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	1.02	1.02	1.02	1.05	0.95	0.97	7.00	Sh	CI	1
9	winter	0.99	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	0.96	1.02	1.03	1 01	1.00	1.03	0.98	7.00	Sh	CI	. 1
10	spring	1.00	0.72	1.02	0.72	1.02	0.72	1.02	1.02	1.02	1.02	1.02	1.02	1.02	0.95	1.01	1.01	1.02	1.04	1.02	8 95	7.00	Sh	CI	1
11	spring	0.97	0.55	0.98	0.55	0.98	0.55	89.0	0.98	0.98	0,98	0.98	0.98	0.98	0.98	0.99	0.97	1.00	1.04	1.05	0.90	7.00	Sh	CI	,
12	spring	1.01	0.38	1.03	0.38	1.03	0.38	1.03	1.03	1.03	1.03	1.03	1.03	1.03	0.98	0.99	0.97	1.00	1.04	1.05	0.98	7.00	Sh	CI	. 1
13	spring	1.01	0.31	1.03	0,31	1.03	0.31	1.03	1.03	1.03	1.03	1.03	1.03	1.03	0.98	1.01	1.01	1.01	1.01	1.01	0.98	7.00	Sh	CI	1
14	spring	0.80	0.34	0.87	0.34	0.87	0.34	0.87	0.87	0.87	0.87	0.87	0.87	0.87	1.01	0.98	0.97	0.98	1.00	1.05	1.01	7,00	Sh	CI	1
15	spring	0.93	0.34	0.95	0.34	0.95	0.34	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.96	1.00	0.98	1.01	1.05	1.04	0.90	7.00	Sh	CI	1
16	spring	0.91	0.47	0.92	0.47	0.92	D.47	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.95	0.97	1.00	1.04	1.04	1.04	0 95	7.00	Sh	CI	1

Figure 6.17 shows the portion of the worksheet showing the information related to the date and time when the data for a particular year was saved last time. This information is very useful to keep record of the progress of data input if it is done in steps.

year	saved	last saved
1970	saved	2/20/02 16:19
1975	saved	1/28/02 19:26
1980	saved	1/28/02 19:26
1985	saved	1/28/02 19:26
1990	saved	1/28/02 19:27
1995	saved	1/28/02 19:27
2000	saved	1/28/02 19:27
2005	saved	2/20/02 16:19
2010	saved	2/20/02 10:19
2015	saved	2/20/02 10:19
2020	saved	2/20/02 10:19
2025	saved	2/20/02 10:18
2030	saved	2/20/02 16:19

Figure 6.17. Date and time of the saved data in worksheet "LdFac(1)".

Figure 6.18 shows a part of the input data for the hourly variation of load during each of the weekdays and for each of the four seasons. These data is provided for the base year and can be modified for the future years of the study period as desired.

01 Jan 2030

le 3b: Da	ily co	effici	ients	for Ir	ndust	ry ,in	d1										
2030	winte	r						sprin	1						summ	er	
hour	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon
00.00	0.93	1.01	1.01	1.09	0.93	1.01	1.01	0.93	1.01	1.01	1.09	0.93	1.01	1.01	0.93	1.01	1.01
01.00	0.89	0.96	0.96	1.06	0.89	0.96	0.96	0.89	0.96	0.96	1.06	0.89	0.96	0.96	0.89	0.96	0.96
02.00	0.86	0.92	0.92	1.02	0.86	0.92	0.92	0.86	0.92	0.92	1.02	0.86	0.92	0.92	0.86	0.92	0.92
03.00	0.85	0.93	0.91	1.00	0.85	0.93	0.91	0.85	0.93	0.91	1.00	0.85	0.93	0.91	0.85	0.93	0.91
04.00	0.86	0.90	0.94	1.01	0.80	0.96	0.94	0.86	0.96	0.94	1.01	0.86	0.96	0.94	0.86	0.96	0.94
05.00	0.90	0.96	0.96	1.02	0.90	0.96	0.96	0.90	0.96	0.96	1.02	0.90	0.96	0.96	0.90	0.96	0.96
06.00	0.97	0.98	0.97	1.00	0.97	0.98	0.97	0.97	0.98	0.97	1.00	0.97	0.98	0.97	0.97	0.98	0.97
07.00	1.03	1.02	0.99	0.97	1.03	1.02	0.99	1.03	1.02	0.99	0.97	1.03	1.02	0.99	1.03	1.02	0.99
08.00	1.05	0.99	0.99	1.00	1.05	0.99	0.99	1.05	0.99	0.99	1.00	1.05	0.09	0.99	1.05	0.99	0.99
09.00	1.02	1.00	0.96	1.03	1.02	1.00	0.96	1.02	1.00	0.96	1.03	1.02	1.00	0.96	1.02	1.00	0.96
10.00	1.02	0.99	0.95	1.02	1.02	0.99	0.95	1.02	0.99	0.95	1.02	1.02	0.99	0.95	1.02	0.99	0.95
11.00	1.01	0.98	0.97	0.98	1.01	0.98	0.97	1.01	0.98	0.97	0.98	1.01	0.98	0.97	1.01	0.98	0.97
12.00	1.03	0.99	0.98	0.98	1.03	0.99	0.98	1.03	0.99	0.98	0.98	1.03	0.99	0.98	1.03	0.99	0.98

Figure 6.18. Hourly coefficients for industrial sector in worksheet "LdFac(1)".

Finally, at the end of the worksheet, color codes used in the worksheet are given as shown.

Colorcodes:								
	descriptions (locked)							
	calculated values (locked)							
	calendar entries from prvious or next year							
	functions: call by double-clicking on theses fields							
	Sundays and other free days (comment shows date)							
	Saturdays and other days before free days (comment shows date)							
	first day in month							

Figure 6.19. Color codes in worksheet "LdFac(1)".

(ix) Worksheet "LdFac(2)"

This worksheet contains the same information as in the worksheet "LdFac(1)" but for the Transport sector.

(x) Worksheet "LdFac(3)"

This worksheet contains the same information as in the worksheet "LdFac(1)" but for the Household sector.

(xi) Worksheet "LdFac(4)"

This worksheet contains the same information as in the worksheet "LdFac(1)" but for the Service sector.

(xii) Worksheet "Check"

The information given in this worksheet is useful to locate the position of error in the load modulation coefficients if their sum is not correct. By looking at this worksheet, one can locate the errors if any in the input data for load coefficients. A part of this worksheet is shown in Figure 6.20.

8 1	A	В	С	D	E	F	G	н	1. I.	J	к	L	м	
1	BACK						Errors in the sum of week coefficients							
2	E62							norm	alize th	ne s	um to	be 53		
з	L	dFac(1)			L	dFac(2	2)			L	dFac(3)	
4	sum is	not 53	in year	1980										
5	sum is	not 53	in year	1990							G.			
6	sum is	not 53	in year	2000		-						1		
7	sum is	not 53	in year	2015								1 1		
8										0		1	_	
9														
10												· · · · · · · · · · · · · · · · · · ·		
11					_					_				
12		-						5			2	1 1		
13		-	-									1	<u> </u>	
14											<u></u>			
15														
10								8			2			
17				s				s	s	<u>. </u>	13			
18	-	· · · · · · ·		97 - C			-		1		(0-00		
19						Errors in the sum of hourly coefficients							ients	
20						normalize the sum to be 24								
21	L	dFac(1)			LdFac(2)					LdFac(3)			
22			-):		0		- Ş	

Figure 6.20. Errors in sums of the weekly, daily and hourly load coefficients in worksheet "Check".

(xiii) Worksheet "LDC"

The annual and seasonal peak loads (MW), electricity requirements (GWh), load factors (%) and number of hours as well as the numerical data for the four seasonal load duration curves are given in this worksheet. The portion of this worksheet showing the peak load and electricity requirements as calculated by the model are shown in Figure 6.21. Figure 6.22 shows the section of the worksheet giving the numerical data for the seasonal load duration curves.

Table 7: Ordere	ed Load Dur	ation Cur	ves (Tot	al) (CASE	NB/low):		
Calculate	Print		Output	C:\tmp\loadwasp1.			
	Summary: use growth:	yes					
1970	total	winter	spring	summer	autumn		
Maximum load (MW):	2361.993	1939.466	1197.757	1342.227	2381.993		
Rel. to ann. peak	1.000	0.821	0.507	0.568	1.000		
Energy (GWh):	8446.911	2036.733	1993.513	2278.039	2138.626		
Load factor (%):	40.82	49.16	75.38	75.23	41.92		
Number of hours:	8760	2138	2208	2258	2160		
Diff. to annual deman	2.593						
% Diff. to ann. deman	0.0						
1975	total	winter	spring	summer	autumn		
Maximum load (MW):	2847.349	2847.349	1747.071	1828.343	1885.921		
Rel. to ann. peak	1.000	1.000	0.614	0.842	0.662		
Energy (GWh):	12938.962	3446.302	2611.618	3470.013	3411.032		
Load factor (%):	51.87	56.66	67.70	84.13	83.74		
Number of hours:	8760	2138	2208	2258	2160		
Diff. to annual deman	-12,792						
% Diff. to ann. deman	-0.1						

Figure 6.21. Peak load, electricity requirements and load factor data in worksheet "LDC".

Figure 6.22. Load and duration values for annual load duration curves in worksheet "LDC".

(xiv) Worksheet "LDC-G"

This worksheet shows the seasonal and annual load duration curves in graphical form for different years considered in the study. Figure 6.23 shows a part of this worksheet containing load duration curves for 1970 and 1975.

Figure 6.23. Graphical representation of annual load duration curves in worksheet "LDC-G".

(xv) Worksheet "ChrLdc"

This worksheet contains the chronological load data for each hour for all years considered in the study period. Figure 6.24 shows a section of this worksheet.

	A	В	С	D	E
1	1970	1975	1980	1985	1990
2	0.85106798	1.84911117	2.68809191	5.87579495	5.19515786
3	0.812643424	1.7656382	2.60190606	5.68738563	4.95964039
4	0.779829497	1.69435445	2.50927286	5.48488466	4.75251013
5	0.772089678	1.67754924	2.44979786	5.35486354	4.70601335
6	0.788654832	1.71355251	2.49140021	5.44578134	4.8630513
7	0.81732712	1.77586225	2.51139841	5.48947566	4.92599951
8	0.886730804	1.92667331	2.45292965	5.36165528	5.00210656
9	0.935309684	2.03223832	2.39005522	5.2242058	5.11818975
10	0.953425758	2.0716148	2.46925326	5.39729957	5.11293663
11	0.930887397	2.02265678	2.52392216	5.51677651	4.93143344
12	0.934710538	2.03097745	2.52097432	5.5103147	4.9143919
13	0.919901351	1.99881288	2.40224243	5.25077441	4.97169445
14	0.940781917	2.04419708	2.41804617	5.28530021	5.06018908
15	0.918686195	1.99619936	2.40118877	5.2484362	5.12852016

Figure 6.24. Chronological load data in worksheet "ChrLdc".

(xvi) Worksheet "SvFac(1)"

The data for seasonal, daily and hourly load coefficients for the Industrial sector is saved in this worksheet. The program reads data from this worksheet in order to display data for a specific year in the "LdFac(1)" worksheet as requested by the user. Figure 6.25 shows a section of this worksheet.

	A	В	С	D	E
1	1.00649924	0.97627389	0.9943227	1.00682981	1.01942877
2	1.01573379	0.97627389	0.9943227	1.00682981	1.01942877
3	1.03203728	0.99228999	0.99848426	0.99397797	1.00100116
4	0.94309134	0.9999857	1.10881871	1.00457394	0.93768576
5	0.9987058	0.96326209	0.99135904	0.9953109	1.00493484
6	0.98542771	0.99093155	1.00953344	0.99423366	0.9969697
7	0.98898188	0.94147867	1.03408624	1.02809268	1.03634766
8	0.95073397	0.97036573	1.01524181	1.01822269	1.01763629
9	0.98815694	0.95694241	1.02313988	1.025108	1.0085352
10	0.99776615	0.95111053	1.00695404	1.00734398	1.02253562
11	0.96671231	0.97860316	0.98951028	0.97158076	0.99903949
12	1.0120434	0.97860316	0.98951028	0.97158076	0.99903949
13	1.01187676	0.97534807	1.00582374	1.01244131	1.01294792
14	0.85954924	1.01269579	0.98453714	0.96546312	0.98003176
15	0.92886875	0.95669924	0.99930807	0.98262306	1.01008094

Figure 6.25. Data for saved coefficients in worksheet "SvFac(1)".

(xvii) Worksheet "SvFac(2)"

This worksheet contains the same information as in the "SvFac(1)" worksheet but for the Transport sector.

(xviii) Worksheet "SvFac(3)"

This worksheet contains the same information as in the "SvFac(1)" worksheet but for the Household sector.

(xix) Worksheet "SvFac(4)"

This worksheet contains the same information as in the "SvFac(1)" worksheet but for the Service sector.

(xx) Worksheet "temp"

This worksheet is used by the program to store some data temporarily during the execution of the program. The information contained in this worksheet can be deleted to decrease the size of the workbook file "**MAED El.xls**".

7 EXECUTION OF MAED MODULE 2

7.1 Introduction

Before starting the execution of MAED Module 2, it is necessary to appropriately set the computer by:

- changing the date format as explained in Figure 7.1;
- set the security level of Excel program to medium (Tools/Macro/Security/Medium).

With this security level setting, when the user opens the Microsoft Excel workbook file <**MAED_El.xls**>, a **Dialogue Box** appears on the computer screen inquiring the user whether to enable Macros in the workbook or not (see Figure 7.2). The user must click **Enable Macros** button in order to use the **Macros** available in the workbook. This is necessary to allow the use of various Microsoft Visual Basic subroutines present in the workbook, which activate various buttons to perform various functions e.g. to move control from one worksheet to another, to calculate the load duration curves and to check the validity of input data etc.

Before starting to use MAED, it is necessary to change the date format used by Microsoft Windows programs as described below.

For Microsoft Windows 95 & 98

1.Open the **Regional Settings Properties** dialog box by clicking **Start** button, pointing to **Settings**, clicking **Control Panel**, and then clicking Control Panel, and then clicking **Regional Settings**.

2.On the Date tab, select "yyyy-MM-dd" from the Short date style Listbox.

3. Press **OK** button to close the **Regional Settings Properties** Dialogue box.

For Microsoft Windows 2000 & Windows XP

1. Open the Regional and Language Options in Control Panel.

2. On the Regional Options tab, under Standards and formats, click Customize.

3. On the **Date** tab, select "yyyy-MM-dd" from the **Short date style** Listbox.

4. Press OK button to close the Customize regional Options Dialogue box.

5. Press OK button to close the Regional and Language Options Dialogue box.

Figure 7.1. Change Date Format before using MAED.
Microsoft Excel		×
The workbook you are opening of Some macros may contain viruse	ontains macros. s that could be harmful to yo	our computer.
If you are sure this workbook is f 'Enable Macros'. If you are not su any macros from running, click 'D	rom a trusted source, click ure and want to prevent isable Macros',	Iell Me More
	aubooks with massag	
Disable Macros	Enable Macros	Do <u>N</u> ot Open

Figure 7.2. Microsoft Excel dialogue box asking to Enable Macros.

Another Dialogue Box may also appear during opening the <MAES_El.xls> Excel file asking the user whether to update the automatic links of this workbook file to other workbook files (See Figure 7.3). The answer for this question depends on what version of the MAED_D program is used for energy demand analysis. If the energy demands by sectors used in MAED_El program were estimated with the version I of MAED_D program, distributed before December 2004 and which is automatically linked to MAED_El program, the first time a user opens the <MAED_El.xls> file, it is necessary to click the Yes button in order to import the necessary data from Module 1 of MAED contained in the <MAED_D.xls> workbook file. However, once data is imported from this file, it is not necessary to click the Yes button unless the user has made some changes to the <MAED_D.xls> workbook file. If the MAED_E program is used in conjunction with the version II of MAED_D program, distributed after January 2005 and which is not yet automatically linked to MAED_El program, it is necessary to click the No button and to enter the respective energy demands directly in Table 1 of worksheet "FinEle" of <MAED_El.xls> workbook file.

The workbook you opened contains automatic links to information in another workbook.
Do you want to update this workbook with changes made to the other workbook?
To update all linked information, click Yes. To loan the existing information alid. Ma
to keep the existing information, click No.

Figure 7.3. Microsoft Excel Dialogue Box asking to update the automatic linked information from other workbooks.

7.2 Execution of MAED_El Program

As described in Chapter 6, MAED Module 2 is designed to generate the hourly load demand for an electric system based on:

- (i) the annual electricity demand calculated either using Module 1 of MAED or using any other methodology;
- (ii) load growth over the year due to increased electricity demand;

- (iii) seasonal load variation coefficients;
- (iv) daily load variation by day type, and
- (v) hourly load variation during day for all day types.

Therefore, all these five categories of input data are required for execution of Module 2.

The major steps involved in the execution of this Module are:

- (i) Preparation of necessary input data;
- (ii) Input and validate the required data in various worksheets described in previous section;
- (iii) Execute the Module 2 program; and
- (iv) Check the model results.

The user may need to repeat the step (ii) to (iv) if he is not satisfied with the model results. We shall describe these steps in more detail in the following paragraphs.

Step-I: Preparation of Necessary Input Data

The first step is to gather the information required for execution of the model. Some of which may be based on the Module 1 or otherwise, while the information related to seasonal (weekly), daily (by day type) and hourly variation of electricity load in various economic sectors and sub-sectors (clients) is based on historical data. The details for preparation of these parameters based on historical statistics are given in Appendix C of Reference 12.

If Module 1 of MAED is used for electricity demand projections, then sector wise annual electricity demand (GWh) and annual growth rates will be available from Module 1 and user is not required to input this information, otherwise these information is required to be collected from some other similar study. Shares of different clients within each sector are also needed for the base year as well as for the future years considered in the study.

Step-II: Data Entry in the Worksheets

The data required for Module 2 is divided into various worksheets as described in previous section of the User's Manual. As a general rule, user needs to input data in the cells with white background. All the input parameters required in different worksheets are described below.

I. Worksheet "Descr"

The first worksheet in which some user input is required is the "Descr" worksheet. In this worksheet, the user provides some general information related to the electricity demand scenario e.g. Country/region name, Scenario name and number, Author's name and Date etc.

II. Worksheet "Calendar"

In this worksheet, information related to the calendar days is provided. The user lists the normal and special holidays during each of the year considered under the study period. This information is provided for the weekly holidays as well as those holidays occurring at special occasions. In the next section of the worksheet, the starting dates of different seasons for each year are provided. Four typical seasons are considered by the model, i.e. winter, spring,

summer and autumn. A season that starts at the end of a year and continue at the beginning of the next year can have two starting dates for a model reference year, once on 1st of January and second at the beginning of the season at the end of the year. Therefore, the user has to define the start dates for 5 seasons. At the end of this Table, the last date of the year i.e., 31 December is also provided. In the next section of the worksheet, the starting and ending dates of a special season are defined for each reference year in the study period. A special season could be "Ramadan" in Muslim countries, Christmas in some other countries or any other special period of year having different pattern of electricity consumption during this period. At the end of the worksheet, the user has to provide the sequence of names of weekdays in a typical week (for example, from Monday to Sunday in Europe and from Saturday to Friday for Islamic countries) and the typical days for hourly load variation (for example, Wednesday, as a typical working day, Saturday and Sunday in Europe).

III. Worksheet "FinEle"

The user input in this worksheet is the share of different clients in different sectors of economy. At maximum, six clients can be defined for each sector and the sum of shares of all clients in each sector must be equal to 100% in all sectors. In the sample case, four sectors of economy (Industry, Transport, Household and Service) and one client for each sector are considered. However, user can change the names of these sectors as well as the names and number of clients to be considered in each sector.

Definition of Clients

It may be noted that the number of clients defined in the worksheet "**FinEle**" is very important and the input data required and calculations made by the model are dependent upon this information. The number of non-empty names of clients in a particular sector determines the number of clients present in that sector and all the future calculations will be made for only these clients. A second important point to be considered regarding the clients data is that all the clients in a sector should be defined in consecutive rows starting from the first row below the years row of that sector. For example, if 3 clients are defined as shown in Figure 7.4, the model will consider only the 2 clients defined in the first two rows and will ignore the third client "**ind3**" for its further calculations.

 Table 1a1a: Share of industrial clients:								
	unit	1970	1975	1980	1985			
ind1	%	50.00	50.00	50.00	50.00			
ind2	%	20.00	20.00	20.00	20.00			
	%	0.00	0.00	0.00	0.00			
ind3	%	30.00	30.00	30.00	30.00			
	%	0.00	0.00	0.00	0.00			
	%	0.00	0.00	0.00	0.00			
Total	%	100.00	100.00	100.00	100.00			

Figure 7.4. Definition of Clients in worksheet "FinEle".

IV. Worksheet "SecEle"

This worksheet requires information of Transmission losses of the overall power system and distribution losses for each sector considered in the study. All of these data are required for

each reference year considered in the study period. In addition to that, some information related to adjustment of peak demand can also be provided in this worksheet if the peak demand calculated by the model does not match with the actually experienced value by the power system. The user may use the "**multiplier**" or "**addition**" and "**duration**" values to adjust the peak demand.

V. Worksheet "LdFac(1)"

This worksheet requires extensive input data for seasonal (weekly), daily and hourly load variation coefficients. Information to be provided by the user is subdivided into a number of Tables (3a through 3g) in this worksheet.

Table 3a requires information of seasonal (weekly) and daily (day type) load coefficients for various reference years in the study period. The first few columns contain weekly load variation coefficients for each year considered in the study. In total, there are 53 coefficients required for each year. The first and the last week may have less than 7 days due to different day of week on the 1st of January. Thus the sum of all coefficients must be equal to 53.

In the section of Table 3a towards the right side, the user has to provide the load variation coefficients by day type during a week. These coefficients are required for the all seven days of week and for each week in a year (53 weeks, due to the reason described earlier). The names of weekdays are shown in the first row. The sum of the coefficients for each week, given in the last column, must be equal to 7.

Table 3b contains the information of hourly load variation coefficients for the client-1 in the Industrial sector. These coefficients are defined for 24 hours for each weekday (7 in total) and for each season (for all of the four seasons and for the special season). The sum of hourly coefficients in each day must be equal to 24. Tables 3c to 3g contain the similar information for the rest of 5 clients in the Industrial sector respectively. The user has to supply these data for as many clients as defined in the worksheet "**FinEle**" in Table 1a1a.

Description of various buttons and the areas that could be double-clicked in worksheet "LdFac(1)" are shown in Figures 7.5, 7.6 and 7.7.

Note: Before using the buttons 'N', 'Cl' and 'Sh' the respective "LdFac(?)" worksheet must be unprotected using the standard Excel procedure (Tools/Protection/Unprotect Sheet). No password is required.

Figure 7.5. Illustration of various double-click options in the seasonal coefficients section of Table 3a in worksheet "LdFac(1)".

Figure 7.6. Illustration of various buttons and double-click options available in the daily coefficient section of Table 3a in worksheet "LdFac(1)".

Display/Edit Data for a Particular Year

User can retrieve the seasonal, daily and hourly coefficients for a particular year from the respective **SavFac(?)** worksheet by either pressing the "**Show**" button (and selecting the year in the drop down list) as shown in Figure 7.6 or by double-clicking the respective year in seasonal variation coefficients title row as illustrated in Figure 7.5.

Save Data for a Particular Year

Data for the current year can be saved to the respective "**SavFac(?)**" worksheet by pressing the "**Save**" button as illustrated in Figure 7.6. A small Table towards right of the Table 3a shows the date and time of the data saved for each reference year in the study period as shown in Figure 6.17 in previous section of the User's Manual.

Display Data in Graphical Form

The user can show the seasonal, daily and hourly coefficients in graphical form by doubleclicking the "Sh" cell in the respective row or column as illustrated in Figures 7.5, 7.6 and 7.7. Once graph for weekly, daily or hourly coefficients is displayed, the color of the respective "Cl" cell is changed to red. It means that the displayed graph window can be closed by double-clicking this red color "Cl" cell.

Close the Graph Window

The graph window can be closed by double-clicking the "CI" cell as illustrated in Figures 7.5, 7.6 and 7.7.

Check Validity of Coefficients Data

Press the "**Check**" button to check the sum of the seasonal, daily or hourly coefficients equal to 53 in the case of seasonal coefficients, 7 in the case of daily coefficients and 24 in the case of hourly coefficients. The resulting **Error Messages** are stored in the "**Check**" worksheet.

Normalize the Coefficients

Any set of weekly, daily or hourly load coefficients can be normalized by double-clicking the respective "N" cell located in the respective column or row. Normalization of coefficients means to adjust the values of the coefficients in order to make their sum equal to 53 in the case of seasonal coefficients, 7 in the case of daily coefficients and 24 in the case of hourly coefficients.

Note: The "Sh", "Cl" and "N" buttons for the seasonal coefficients are in the top rows of the Table 3a, the daily variation coefficients are located towards the right of the Table 3a and hourly coefficients are in the bottom rows of the Table 3b. The color codes used in this worksheet are given at the bottom of the worksheet.

VI. Worksheet "LdFac(2)"

This worksheet contains the same information as given in worksheet "LdFac(1)" but for the **Transport** sector.

Tabl	e 3b: Da	ily co	effic	ients	for Ir	ndust	ry ,ind	11							
	2030	winte	r						spring]					:
	hour	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri
	00.00	0.93	1.01	1.01	1.09	0.93	1.01	1.01	0.93	1.01	1.01	1.09	0.93	1.01	1.01
	01.00	0.89	0.98	0.96	1.06	0.89	0.98	0.98	0.89	0.98	0.96	1.08	0.89	0.96	0.96
	02.00	0.86	0.92	0.92	1.02	0.86	0.92	0.92	0.86	0.92	0.92	1.02	0.86	0.92	0.92
	03.00	0.85	0.93	0.91	1.00	0.85	0.93	0.91	0.85	0.93	0.91	1.00	0.85	0.93	0.91
	04.00	0.86	0.96	0.94	1.01	0.86	0.96	0.94	0.86	0.96	0.94	1.01	0.86	0.96	0.94
	05.00	0.90	0.96	0.96	1.02	0.90	0.96	0.96	0.90	0.96	0.96	1.02	0.90	0.96	0.96
	06.00	0.97	0.98	0.97	1.00	0.97	0.98	0.97	0.97	0.98	0.97	1.00	0.97	0.98	0.97
	07.00	1.03	1.02	0.99	0.97	1.03	1.02	0.99	1.03	1.02	0.99	0.97	1.03	1.02	0.99
	08.00	1.05	0.99	0.99	1.00	1.05	0.99	0.99	1.05	0.99	0.99	1.00	1.05	0.99	0.99
	09.00	1.02	1.00	0.96	1.03	1.02	1.00	0.96	1.02	1.00	0.96	1.03	1.02	1.00	0.96
	10.00	1.02	0.99	0.95	1.02	1.02	0.99	0.95	1.02	0.99	0.95	1.02	1.02	0.99	0.95
-	11.00	1.01	0.98	0.97	0.98	1.01	0.98	0.97	1.01	0.98	0.97	0.98	1.01	0.98	0.97
-	12.00	1.03	0.99	0.98	0.98	1.03	0.99	0.98	1.03	0.99	0.98	0.98	1.03	0.99	0.98
	13.00	1.01	0.99	1.00	0.98	1.01	0.99	1.00	1.01	0.99	1.00	0.98	1.01	0.99	1.00
	14.00	1.01	1.00	1.02	0.96	1.01	1.00	1.02	1.01	1.00	1.02	0.98	1.01	1.00	1.02
	10.00	1.02	1.00	1.02	0.94	1.02	1.00	1.02	1.02	1.00	1.02	0.94	1.02	1.00	1.02
	10.00	1.00	1.98	1.01	4.00	1.00	4.04	1.01	1.00	4.04	1.01	4.00	1.00	4.04	1.01
Double-click to	00.00	1.13	1.04	1.05	1.03	1.13	1.04	1.05	1.13	1.04	1.05	1.03	1.13	1.04	1.05
show the Graph of	0.00	1.11	1.00	1.07	1.02	1.11	1.00	1.07	1.11	1.00	1.07	1.02	1.11	1.00	1.07
bourly coefficients	8.00	1.11	1.07	1.05	0.00	1.11	1.07	1.05	1.11	1.07	1.05	0.00	1.11	1.07	1.00
nouny coefficients	40	1.07	1.00	1.00	0.08	1.07	1.00	1.00	1.07	1.00	1.00	0.00	1.07	1.00	1.00
in this column		2.04	1.00	1.00	0.00	1.04	1.00	1.00	1.04	1.00	1.00	0.00	1.04	1.00	1.00
	23.00	000	1.00	1.06	0.00	0.99	1.00	1.00	0.99	1.00	1.00	0.00	0.99	1.00	1.00
-	Total	24.0	24	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
	TOTAL	Sh	Sh	a.	Sh	Sh	Sh	Sh	Sh	Sh	Sh	Sh	Sh	Sh	Sh
		CI CI	ČI	ČI	ČI	<u></u>	ČI	ČI.	CI CI	ČI	ČI.	ČI.	ČI	ČI.	č1
-		N	N	N	1	N	N	N	N	N	Ň	Ň	Ň	Ň	N
				$\overline{}$	-					\sim	-				
Double-click to	close			/			Í	D	oub	e-c	ick	to n	orm	alize	the
the Graph of ho	urly		/					h	ourb	V CO	effic	ien	ts in	this	
a officiente in t	hio														
coefficients in this															
L column							```	~							
		-	-												

Figure 7.7. Illustration of various double-click options available in the hourly coefficients of Table 3b in worksheet "LdFac(1)".

VII. Worksheet "LdFac(3)"

This worksheet contains the same information as given in worksheet "LdFac(1)" but for the Household sector.

VIII. Worksheet "LdFac(4)"

This worksheet contains the same information as given in worksheet "LdFac(1)" but for the Service sector.

After completing the input data for the seasonal, daily and hourly coefficients for all the sectors, user may press the "Check" button in each of these worksheets and then check for any error messages displayed in the "Check" worksheet. In case, any error messages are there, the user can modify the respective set of coefficients in the corresponding "LdFac(?)" worksheets as indicated by the error messages.

Step-III: Execution of Module 2

Once the coefficient data are correct to the full satisfaction, the user can move to the "LDC" worksheet. By pressing the "Calculate" button, the user can start the process of calculating the resultant hourly loads in the system for each year considered in the study. The results of these calculations are saved/updated in the "LDC", "ChrLDC" and "temp" worksheets. This step takes relatively longer time, as it requires extensive calculations done in the background. However, some messages are displayed during the execution of the model, about the status of the program execution at a particular time under the "Calculate" button.

The list and brief description of buttons available in various worksheets of the MAED Module 2 file **<MAED-el.xls**> is given in Table 7.1.

Step-IV: Check the Model Results

After completion of the execution of the MAED Module 2 program, the results of the model are presented in worksheets "LDC", "LDC-G" and "ChrLDC". Description of these worksheets has already been given in previous sections of the User's Manual. The load characteristics for each season as well as those for the overall system are displayed in the same worksheet ("LDC") for each year considered in the study. The respective load duration curves data are also displayed for all the four seasons considered for each year. These data are required by the LOADSY module of WASP (Wien Automatic System Planning Package) model developed by the IAEA for power system expansion planning. However, these data may not be useful, if the user decides to use the number of periods in a year other than four periods in WASP. In that case, the user will need to use the chronological load data stored by the model in the worksheet "ChrLDC" and generate the LOADSY data by him. The annual and seasonal load duration curves in graphical form are stored in the worksheet "LDC-G". The chronological load values as well as the load duration curves generated by the model can be compared with the actual data for the base year and the user should try to explain any discrepancies, if found between the two values. If the results are not in line with the expectations of the user, he should check again the input data entries and may need to repeat steps II to IV again.

Table 7.1: Description of buttons available in various worksheets of the **MAED Module 2 file** <**MAED-el.xls**>

Button	Worksheet/(s)	Description
TOC	All worksheets except MAED_EL, check, ChrLDC, SvFac(1), SvFac(2), SvFac(3), SvFac(4), and temp	To move to the worksheet "TOC".
Notes	TOC	To move to the worksheet " Notes ".
Descr	ТОС	To move to the worksheet " Descr".
FinEle	ТОС	To move to the worksheet "FinEle".
SecEle	TOC	To move to the worksheet "SecEle".
LdFac(1)	TOC	To move to the worksheet "LdFac(1)".
LdFac(2)	ТОС	To move to the worksheet "LdFac(2)".
LdFac(3)	ТОС	To move to the worksheet "LdFac(3)".
LdFac(4)	ТОС	To move to the worksheet "LdFac(4)".
LDC	ТОС	To move to the worksheet " LDC ".
LDC-G	ТОС	To move to the worksheet " LDC-G " containing the graphs for the load duration curves.
LDC(2)	TOC	To move to the worksheet " temp ".
Check	LdFac(1), LdFac(2), LdFac(3), LdFac(4)	To check the sum of the seasonal, daily or hourly coefficients. The results are displayed in worksheet " check ".
show	LdFac(1), LdFac(2), LdFac(3), LdFac(4)	To retrieve the seasonal, daily and hourly coefficients for a particular year from the respective " SvFac(?) " worksheet.
save	LdFac(1), LdFac(2), LdFac(3), LdFac(4)	To save the seasonal, daily and hourly coefficients for a particular year from the respective " SvFac(?) " worksheet.
Calculate	LDC	To start the process of calculating the resultant hourly loads in the system for each year considered in the study. The results of these calculations are saved/updated in "LDC", " ChrLDC " and "temp" worksheets.
Print	LDC	To export the annual peak load, period peak load ratios ar load duration curves data for the four seasons considered MAED to an input data file specified by the user using the Output file button. The format of this file is in line with the required by the LOADSY module of the IAEA 's power system expansion planning model WASP .
Output file:	LDC	To specify/select the output file to be used to export the MAED results as described in the description of the Print button
GRAPH	LDC	To move to the worksheet "LDC-G" containing the graphs for the load duration curves.
Clear temp data	LDC	To delete the information contained in the worksheet "temp" in order to decrease the size of the workbook "MAED_El.xls" file.
DATA	LDC-G	To move to the worksheet "LDC" containing the numerical data of the load duration curves.

8 THEORETICAL BACKGROUND OF MAED MODULE 2

As stated earlier, the main objective of MAED Module 2 is to convert the total annual demand for electricity of each of the four economic sectors considered in the model (Industry, Transport, Household, and Service sectors) into the electric power demand of these sectors on an hour-by-hour basis. A generalized methodological approach used in MAED Module 2 is given in this section of the User's Manual. The annual electricity demand of a consumer sector is converted into the electric power requested by the same sector at a given hour of a certain day and week of the corresponding year by taking into account the following factors:

- (i) The trend of the average growth rate of the demand over the year;
- (ii) The variation of electricity consumption due to the seasonal impact (which could be expressed in terms of semesters, quarters, months, weeks);
- (iii) The impact of the type of day considered in the electricity consumption (whether a working day, a weekend day etc.);
- (iv) The variation of energy consumption due to the period of the day considered (whether in the morning, lunchtime, evening etc.).

Each of these factors is represented by a certain coefficient that in a sense "modulates" the electric power requested by the sector (thus, they are called load-modulating coefficients). Each coefficient can be seen as the variation of electricity consumption of the sector with respect to the "standard" consumption of the sector. The latter is represented by the consumption in an equivalent working day.

The general purpose of the methodology consists of calculating the electric power requested by a consumer sector from the grid at hour h in a day j of a week number i, from the power requested by the same sector in the same hour of an average equivalent working day. Following methodology is used for these calculations:

Identification of calendar

In MAED model, the year is divided into four seasons and a special holiday period, which may have different electricity consumption pattern from these four seasons. The user defines the date of the first day of each season, for each reference year considered in the study period, in order to identify different seasons during the year. Similarly, the starting and the ending dates of the special holiday period are also defined. The user also specifies the sequence of the weekdays (for example, from Monday to Sunday in Europe and from Saturday to Friday for Islamic countries) and the typical days for hourly load variation (for example, working day, Saturday and Sunday in Europe).

Consideration of electricity demand growth rate during the year: Coefficient T(i)

In order to come to a standard day, the first correction to be made corresponds to the general trend of the growth of electricity consumption during the year. This is represented by a "deflator" which is calculated on a weekly basis (with a total of 52 values in the year), so that the deflator of the gross electricity consumption (i.e. the growth trend coefficient) for week " i" is :

$$T(i) = \left[1 + \frac{GROWTH}{100}\right]^{\left(\frac{i-26}{52}\right)}$$

where GROWTH is the average annual growth rate of electricity demand of the current sector between the previous last and the current year which is either specified by the user (for the first year) or calculated by the program from the information read in from the MAED Module 1 Microsoft Excel workbook file <**MAED_D.xls**>(for the subsequent years).

Seasonal coefficients: K(i)

In order to take into account the seasonal impact on electricity consumption of a sector, the "seasonal deflator" is used. For the time period "i" (either a semester, a quarter, a month, a week etc.), K(i) represents the average weight of this period in the total electricity consumption for the year.

Consequently, the sum of the K(i) values over the year should be equal to the total number of periods into which the year is subdivided. (Note: The subdivision of the year into seasons for the purposes of preparing the input data for a given case study will depend on data availability for the country being studied. Also, the K(i) coefficients should reflect changes in demand due only to seasonal effects, i.e. in calculating the K(i) values the growth trend effect should be removed first. Section C.4 of Reference 12 describes how the modulation coefficients can be calculated from the knowledge of the chronological electric load curve of a given sector).

In the MAED Module 2, the week has been selected as the elementary time unit for representing these seasonal variations and, therefore, 53 K(i) coefficients must be given as input data for each reference year of study period, keeping in mind that at least one of the first and last week will be not an entire week. If the user does not want to change these coefficients for a future year, he may repeat the same coefficients as for the previous year. Therefore, the only calculation performed by the program for these coefficients is a check:

$$\sum_{i=1}^{53} K(i) = 53$$

If the SUM is not equal to 53, the color of the cell showing the sum of coefficients is turned to red showing a warning message to the user.

Daily ponderation coefficients: P(i, id)

This type of coefficient reflects fluctuations of electricity consumption due to the type of day being considered, i.e. a working day, Saturday, Sunday, etc. Since the general goal of the exercise is to compare the electricity consumption of every time unit to the consumption in the equivalent working day, the relative weight of a working day is chosen to be equal to 1, and the other types of day are weighted in comparison to their relative consumption relative to that of the working day, e.g. a Saturday could be assumed at 0.8 of a working day, a Sunday at 0.7, etc.

In general, these coefficients fluctuate over the year according to the time period considered (in MAED, the week, as stated in the preceding subsection) so that they are more properly represented as P(i, id), I = 1, 53 and id = 1, 7. Again, these coefficients must be given as input data for each reference year of the study period. If the user does not want to change these coefficients for a future year, he may repeat the same coefficients as for the previous year.

Hourly coefficients: LCS(h, id)

The objective of the hourly coefficient is to weigh the energy consumption over the 24 hours of the day. Each hour "h" of a day will be given a coefficient according to the level of consumption in the hour, such as that the sum of the coefficients over the day is equal to 24.

In general, these coefficients are dependent on the time period of the year and the typical days for hourly load variation being considered. The typical days for hourly load variation have been already defined at the beginning of this section. They may be some particular days of the week (for example, Wednesday, as a typical working day, Saturday and Sunday). Concerning the variation according to the time period of the year, a differentiation can be made in the program between the consumption in each of the four seasons as well as for the special holidays period. Several types of clients or consumers with varying daily load characteristics can also be distinguished for the sector being considered.

Each client type -ic- (in MAED, the user can define up to 6 clients for each sector) has a weight in each day type -id- (in this case -id- may be less than 7, depending upon how many typical days are considered to reflect the load hourly variation) and for each season -is- (four seasons and the special holidays period considered in MAED) equal to $-LCONT_{is}$ - as well as hourly variation of electricity demand -LCOEF(h,ic,id)- which are given as input. Consequently, from these data the program calculates the aggregated hourly coefficients LCS_{is} of the sector for each season –is- from:

$$LCS_{is}(h,id) = \sum_{ic=1}^{6} LCONT_{is}(ic,id) * LCOEF_{is}(h,ic,id)$$

Before carrying out the above calculations, the program performs the following checks for all seasons -is-:

and

$$\sum_{i=1}^{6} LCONT_{is}(ic, id) = 100 \sum_{h=1}^{24} LCOEF_{is}(h, ic, id) = 24$$

and if they are not fulfilled, a warning message, in the form of changed color to red of the cell showing the sum of the coefficients for a particular day type, is displayed in the respective worksheet.

The LCONT and LCOEF values must be given as input data for each reference year of study period. If the user does not want to change these coefficients for a future year, he may repeat the same coefficients as for the previous year.

Number of equivalent working days in a year

Having identified all above-mentioned coefficients, the total number of equivalent working days for current year and sector is:

$$N = \sum_{m=1}^{NODAYT} P(i, id) * K(i) * T(i)$$

where NODAYT is the total number of days in the year, -id- stands for day type and -i- for the week number of calendar day m.

Thus, the energy consumption of the sector in the equivalent average working day:

$$EWDS = ENERGY / N$$

where **ENERGY** is the annual electricity consumption of the current sector in the current model year estimated with MAED Module 1.

Determination of the average hourly power demand of the sector

The total electricity consumption of the current sector for the calendar day -m- of current year is given by:

E(m) = EWDS * K(i) * T(i) * P(i,id) where -id- is the day type.

The electric power demand of the sector -it- in hour -h- of the day -m- is calculated as:

$$PV_{is}(it, h, m) = E(m) * LCS_{is}(h, id) / 24$$

Finally, the total annual electricity demand of the sector is:

$$ESUM(it) = \sum_{m=1}^{NODAYT} E(m)$$

Determination of the average hourly power demand (or electric load) imposed on the power generating system of the country

The methodology described above is applied to each of the four sectors considered in the program, i.e. Industry, Transportation, Household and Service sectors. Once all sectoral total annual demand and hourly loads have been determined, the program calculates the total annual demand of the power generating system (ET) and the growth rate (GROWAV) of this demand for the current year as following:

$$ET = \sum_{it=1}^{4} ESUM(it)$$

$$GROWAV = \sum_{it=1}^{4} ESUM(it) * GROWTH(it) / ET$$

The total electric load imposed to the generating system in hour -h- is simply obtained by adding the load of each sector for the same hour, i.e.:

$$PT_{is}(h,m) = \sum_{it=1}^{4} PV_{is}(it,ih,m)$$

REFERENCES

- [1] Jenkins, R. and Joy, D., Wien Automatic System Planning Package (WASP): An Electric Expansion Utility Optimal Generation Expansion Planning Computer Code, Oak Ridge National Laboratory, Rep. ORNL-4925, USA (1974).
- [2] Market Survey for Nuclear Power in Developing Countries: General report, IAEA, Vienna, Austria (1973).
- [3] Market Survey for Nuclear Power in Developing Countries, 1974 Edition, IAEA, Vienna, Austria (1974).
- [4] WASP-III Version for IBM-PC (ADB Version), IAEA Internal Document, Vienna, Austria, 1987.
- [5] Wien Automatic System Planning (WASP) Package A Computer Code for Power Generating System Expansion Planning, Version WASP-III Plus User's manual, Volume I: Chapters 1–11, Volume II: Appendices, IAEA Computer Manual Series No. 8, Vienna, Austria (1995).
- [6] Wien Automatic System Planning (WASP) Package A Computer Code for Power Generating System Expansion Planning, Version WASP-IV User's Manual, IAEA Computer Manual Series No. 16, Vienna, Austria (2001).
- [7] Chateau, B. and Lapillonne, B., La prévision à long terme de la demande d'énergie: Essai de renouvellement des méthodes, Thèse de 3e cycle, Institut Economique et Juridique de l'Energie, Université de Grenoble, France (1977).
- [8] Lapillonne, B., MEDEE-2: A Model for Long Term Energy Demand Evaluation, RR-78–17, IIASA, Laxenburg, Austria (1978).
- [9] Hoelzl, A., A Computer Program for Energy Demand Analysis by the MEDEE Approach: Documentation of the MEDEE-2 Version used in IIASA'a Energy Systems Program (1980).
- [10] Energy Systems Program Group of IIASA (BK-81-203, 1981), (W. Haefele, Program Leader), Energy in a Finite World (Vol. 2), A Global Systems Analysis, Ballinger, Cambridge, Massachusetts, USA.
- [11] Etude Nucleo-énergétique pour l'Algérie Etude réalisée conjointement par la Societé Nationale de l'Electricité et du Gaz de l'Algérie et l'Agence Internationale de l'Energie Atomique, Vienne, Austria (1984).
- [12] Model for Analysis of the Energy Demand (MAED), Users' Manual for Version MAED-1, IAEA-TECDOC-386, Vienna, Austria (1986).
- [13] MAED-1 Version for IBM-PC, IAEA Internal Document, Vienna, Austria (1988).
- [14] Energy and Power Evaluation Program (ENPEP), Documentation and User's Manual, ANL/EES-TM-317, Argonne National Laboratory, USA (1987).
- [15] Energy and Electricity Planning Study for Jordan up to the Year 2010, IAEA-TECDOC-439, Vienna, Austria (1987).
- [16] Energy and Nuclear Power Planning Study for Thailand, IAEA-TECDOC-518, Vienna, Austria (1989).
- [17] Experience with WASP and MAED among IAEA member States Participating in the Regional Co-operative Agreement (RCA) in Asia and the Pacific Region (Proceedings of a RCA Workshop, Kuala Lumpur, 5–9 December 1988, IAEA-TECDOC-528, Vienna, Austria (1989).
- [18] Experience in Energy and Electricity Supply and demand Planning with Emphasis on MAED and WASP among Member States of Europe, Middle East and North Africa (Proceedings of a Workshop, Nicosia, Cyprus, 11–15 December 1989, IAEA-TECDOC-607, Vienna, Austria (1991).

- [19] Energy and Nuclear Power Planning Study for Romania (Covering the Period 1989–2010), IAEA-TECDOC-820, Vienna, Austria (1995).
- [20] Energy and Nuclear Power Planning Using the IAEA's ENPEP Computer Package, IAEA-TECDOC-963, Vienna, Austria (1997).
- [21] Energy and Nuclear Power Planning Study for Pakistan (Covering the Period 1993–2023), IAEA-TECDOC-1030, Vienna, Austria (1998).
- [22] Energy and Nuclear Power Planning Study for Armenia, IAEA-TECDOC-1404, Vienna, Austria (2004).
- [23] Energy Supply Options for Lithuania, IAEA-TECDOC-1408, Vienna, Austria (2004).

CONTRIBUTORS TO DRAFTING AND REVIEW

Alkhatib, A.	Syrian Atomic Energy Commission, Damascus, Syrian Arab Republic
Bui, T.D.	International Atomic Energy Agency
Gritsevskyi, A.	International Atomic Energy Agency
Jalal, A.I.	International Atomic Energy Agency
Khan, A.M.	Global Change Impact Studies Centre, Islamabad, Pakistan
Kizhakkekara, J.	International Atomic Energy Agency
Latif, M.	Pakistan Atomic Energy Commission, Islamabad, Pakistan
Molina, P.E.	International Atomic Energy Agency
Naqvi, F.	Pakistan Atomic Energy Commission, Islamabad, Pakistan
Strubegger, M.	International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
Valcereanu, G.	International Atomic Energy Agency