

Advancing climate-resilient low emission development around the world

Fuel Policies and Fleet Technology Management: Mexico's Case Study

January 12, 2016 Moderator: Angela Enriquez, World Resources Institute-EMBARQ

Presenter:

Jorge Macias

General Deputy Director, Environmental Commission for the Central Region of Mexico

DISCLAIMER

 The LEDS Global Partnership does not endorse or recommend specific products or services. Information provided in this webinar is feature on the LEDS Global Partnership web site as one of many best practices resources reviewed and selected by technical experts.

SOME HOUSEKEEPING ITEMS

Two Options for Audio (select audio mode):

1.Listen through your computer.

 Please select the "mic and speakers" radio button on the right hand audio pane display

2.Listen by telephone.

 Please select the "telephone" option in the right-hand display, and a phone number and PIN will display

3.Panelists – Please mute your audio device when not presenting.

4. Technical Difficulties:

Contact the GoToWebinars Help Desk: 888.259.3826

SOME HOUSEKEEPING ITEMS (CONTINUED)

To ask a question:

 Select the "questions" pane on your screen and type in your question.

Having trouble with the webinar:

•A video/audio recording of this webinar and slide decks will be available at:

ledsgp.org/transport

AGENDA

- Overview of the LEDS Global Partnership & Transport Working Group
- Presentation:

Fuel Policies and Fleet Technology Management: Mexico's Case Study

- Questions and Answers
- Closing Remarks
- Survey

LEDS GLOBAL PARTNERSHIP

Advancing Climate-Resilient Low Emission Development Around the World

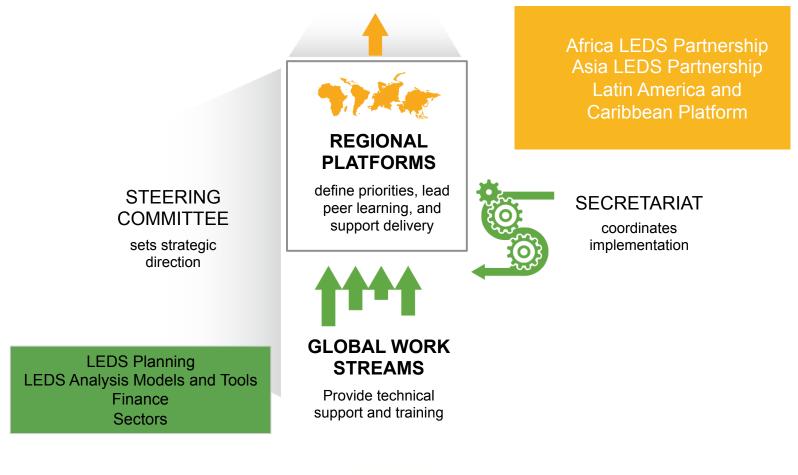
Mission

Harness the collective knowledge and resources of governments, donors and international organizations, and practitioners in scaling up and strengthening implementation of climate-resilient low emission development around the world.

Objectives

Strengthen support for LEDS
Mobilize capacity and advance peer-to-peer learning and collaboration on LEDS
Improve coordination of LEDS at the country, regional, and global levels.

Launched in 2011, the LEDS GP now catalyzes action and collaboration across more than 120 countries and international organizations.



LEDS GP ORGANIZATIONAL STRUCTURE

IMPROVED LEDS

EXAMPLES OF LEDS GP SUPPORT

Peer learning and knowledge sharing

 Global and regional workshops and trainings for more than 800 practitioners on LEDS planning, analysis, finance, and sectoral programs

Technical collaboration

 Transportation and Development Impacts Assessment (DIA) toolkits and country assistance

 National LEDS Finance Strategies with Colombia, Peru, and Chile

•No cost expert assistance available on LEDS analysis, finance, and sector measures to all members

 e.g. support to Mauritius on solar hot water program, Bhutan on transport options, Indonesia on budget allocation, Cambodia on green fund, and Cote D'Ivoire on bio-energy

Understanding and analysis of LEDS benefits

 Application of DIA visual tool with Ghana, Kenya, and Montenegro

 Broader portfolio of shared LEDS communication resources under development

Learn more at: <u>www.LEDSGP.org</u>

LEDS Transport Working Group

Leaders

•EMBARQ, the sustainable urban mobility initiative of WRI Ross Center for Sustainable Cities

 United States National Renewable Energy Laboratory (NREL)

United Nations Environment Programme (UNEP)

Global

•LEDS Transport Toolkit (ledsgp.org/transport)

Webinars

·Global events and trainings

Regional

Workshops that serves the specific needs of that regionMatchmakers for knowledge sharing

Local

•Deep dive, in-country support for governments on specific transport issues and policies

- Workshops with peer experts
- Technical assistance

Remote Expert Assistance on LEDS (REAL)

Supporting sustainable transport systems of tomorrow

Countries facing significantly increasing domand for transport services over the coming decades have a unique opportunity to meet this demand and anable according growth minimizing growthouses gas (GHG) emissions. Sustainable transport systems are based on minimizing travel; shifting to more environmentally (as well as accially and according), sustainable mobility: and improving transport technologies, fuels, and institutions. The Low Emission Development Strategies Global Perturbantly (LESS GP) Transport Working Group provides technical assistance, tools, and training on strategies that support low-emission development in transport systems.

The Working Group is building a LEDS transport community, supporting champions and innewators, creating natworks of experts on low-emission transport, and exploring opportunities for collaboration at local and regional levels. A team of international transport experts from BMBARD, the austainable utera mobility initiative of WRI Rose Center for Sustainable Crises, the United States Department of Energy's National Renewable Energy Laboratory (NREL) and the United Nations Environment Programme (UNEP) are leading these activities.

Avoid-Shift-Improve

approach to sustainable transportation system development

The traditional approach to developing transportation systems has tooused on expending infrastructure – building new reads, rails, and vehicles to mast growing damand. This approach has lad to proliferating spraw, tradit congestion and aesociated economis impacts, costs to public health from readuced local el rquality and increased acadisents, and direct and indirect costs of global climate change impach.

Sustainable transport system development is based on an Avdid-Shift-Improve (AGI) approach—which moves the focus to the policies and basevices behind the dramad for transport. LEDS prioritizes solutions that sake to "svotd" or reduce tips through the integration of the due and bransport planning that "white to more efficient and isso carbon thisnake modes such as public transport, waiting and bicycling and that "improve" the antwinnerhal efficiency from each Mometar traveled by enhancing white and fael backmody This approach addresses the long-form cod of problems ratifier than marginally improved the autous quo.

The Avoid-Shift-Improve (ABI) framework supports the holistic design of sustainable low-emission development strategies for transportation systems.

Advancing climate-resilient low emission development around the world

Fuel Policies and Fleet Technology Management: Mexico's Case Study

Presenter:

Jorge Macias

General Deputy Director, Environmental Commission for the Central Region of Mexico

Introduction

•Mexico during 1980's: "The most polluted city in the world"

AGENDA

Action Plan

Fuel Quality Standards
Inspection & Maintenance Program
A day without a car
Air quality monitoring

•What remains to be done?

•Conclusions

ATT

Context

Mexico City was considered, during the 80's as, **one of the most polluted cities in the world.** Plenty of factors adversely contributed for this circumstance:

1) Geographic conditions:

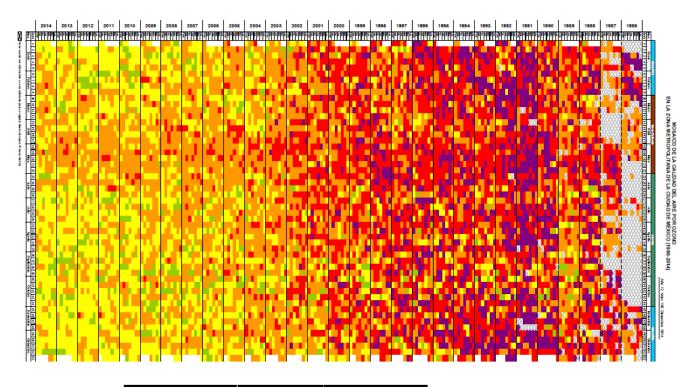
- High altitude
- Poor ventilation conditions
- High radiation

2) Accelerated growth

- Populated (+20 million)
- High Motorization Growth
- High Industrialization

3) Lack of a regulatory framework

Air Quality Monitoring

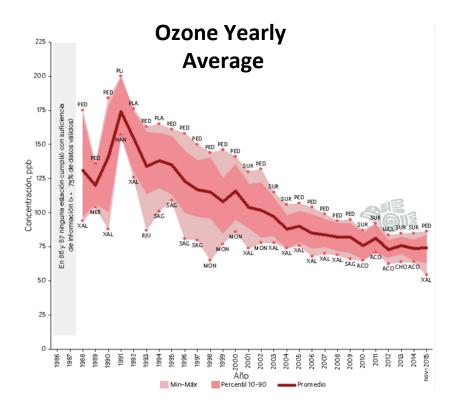


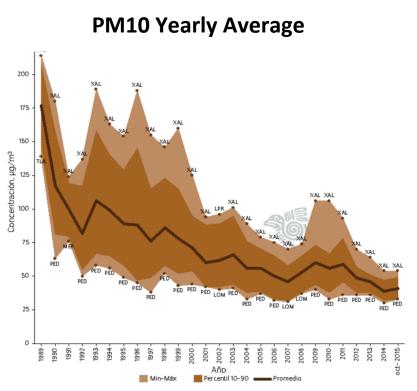
Calidad del aire	IMECA	Concentración (ppm)	
Buena	0 a 50	[0.000, 0.055]	
Regular	51 a 100	(0.055, 0.110]	
Mala	101 a 150	(0.110, 0.165]	
Muy Mala	151 a 200	(0.165, 0.220]	
Extremadamente Mala	201 o más	0.221 o más	

- A ir quality monitoring started with a network of 25 stations.
- They can measure SO2, CO, NO2, O3, PM2.5 & PM10
- Nowadays there are 46 stations total.

Data for Action

Public Awareness

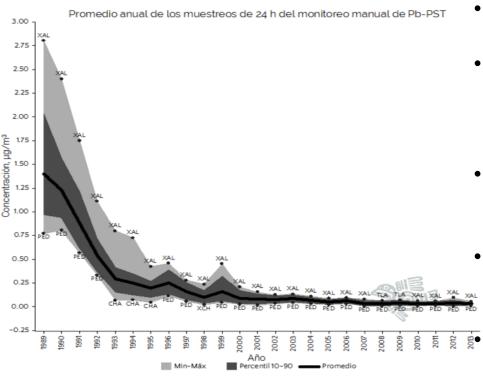

The pollution problem was constantly present in social media and it was **empirically visible**.


This generated a **unique opportunity** for implementing strong regulations and policies.

Environmental Emergency Program

- Sets in motion temporary restrictive measures for the greatest polluting sectors/sources and also implements policies oriented to inform the general population & reduce personal exposure hazards.
- This program increased the overall monitoring & inspection of sources while increasing the pollution costs.
- It was a very important policy to generate citizenship and public awareness towards the environmental emergency.

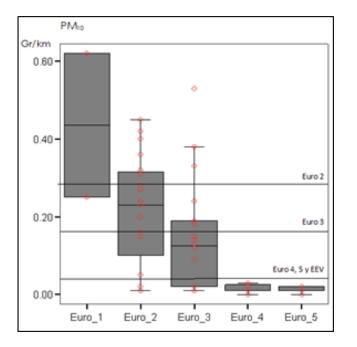
What was Mexico's Roadmap?

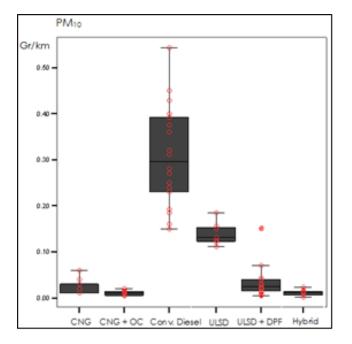


Half the pollution levels with 4 X more population & fleet!

1985 – 2000 Urban Industry Regulation

- The two thermoelectric and the refinery contributed with 68% of the total SO2 emissions.
- At the beginning thermoelectric used CNG during winter, however they were completely converted or shut down by 1998 (heavy oil).
- In 1991 the Azcapotzalco refinery ceased to operate definitively
- The environmental contingency program imposed specific working condition to the urban industry & that increased the polluting costs.
- High pollutant industries decided to move away from Mexico City or to cease their operation.


(1990-95) Fuel Quality Standards (Lead)



- In 1990 Catalytic Converters started being introduced.
- In 1990 the sulfur level in diesel was diminished and distributed and also gasoline without lead started being distributed to strategic fleets.
- 1993 Diesel with low sulfur was generally distributed in Mexico City and in the country in 1997.
- In 2006, NOM 086 is published and stablishes the date for introduction of ULSD.

Goal was general distribution of ULSD in 2010, this goal has been revised and changed to 2018!.

Linkage with Vehicle Emission Standards.

Bus Technology Meta-analysis

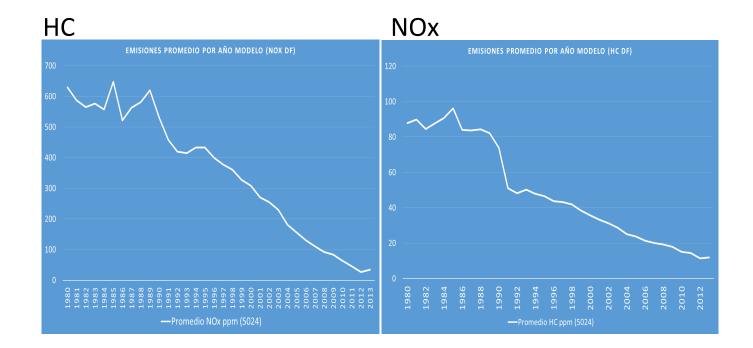
MPh. Jorge Macias Mora, MSc. Hilda Martínez, PhD. Alper Unal Center for Sustainable Transportation – EMBARQ, Mexico City

Day Without a Car!

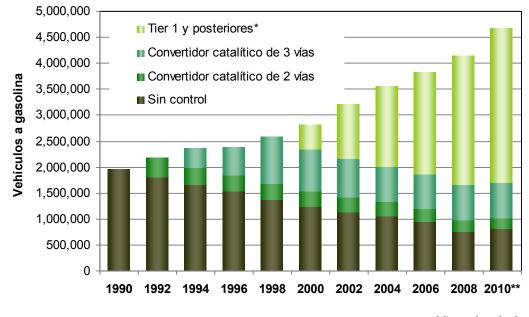
According to Molina Center:

•DWC has had an influence on average fleet age. Mexico City fleet is 4 years younger than comparable cities such as Guadalajara & Monterrey.

•Private vehicle fleet would be greater in 70% for VOC, 35% in NOx and 27% in PM_{10} .


•Nonetheless, they recognize an effect on total fleet growth. Molina Center states that if the program wouldn't have existed there would have been 2.9% less vehicles.

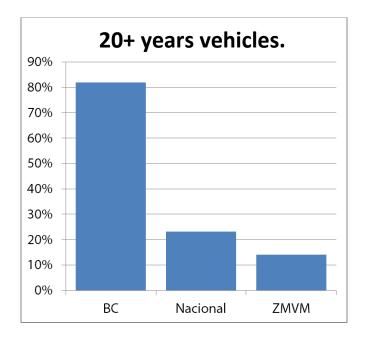
 The fleet growth effect was diminished with the introduction of positive incentives in 1996 & 1998


Vehicles greater than 15 years old contribute with 6X more HC and 10 times more NOx per km.

Source: CTS EMBARQ with SEDEMA data

Inspection & Maintenance

Año calendario


Información SEDEMA DF

*A partir del 2007, entraron vehículos TIER 2.

**Resultados preliminares del Inventario de emisiones de contaminantes criterio de la ZMVM 2010.

Effect of integrated policy I&M + DWC

Special Fleet Management

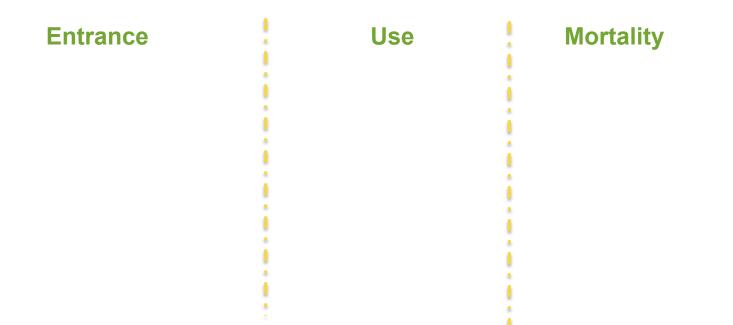
During its peak there were 50,000 regular taxi beetles in Mexico City Streets. Almost twice as much if you consider nonregulated.

A strategy for phasing out beetles (which lacked emission control tech) was required. A strategy that comprised differential rates along with DWC restrictions and a cease to concessions helped changing Mexico's City face.

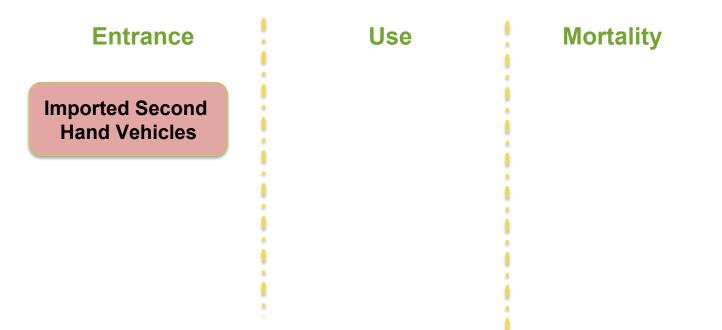
Economist.com rankings

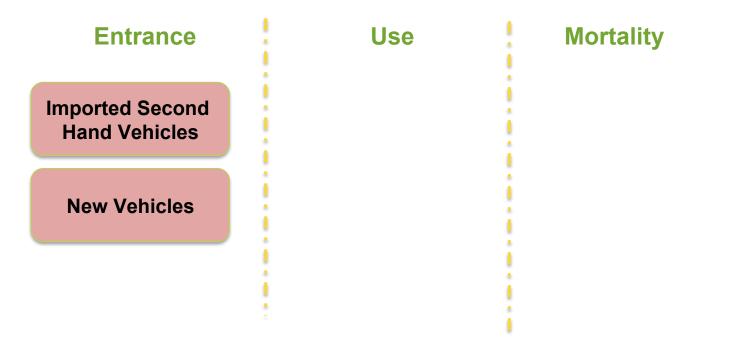
Highest car ownership Number of cars per 1,000 population*

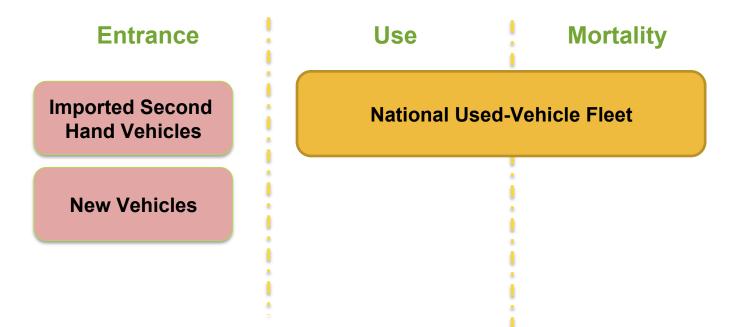
1	Luxembourg	647	26	Ireland	382
2	Iceland	601	27	Greece	368
3	New Zealand	592	28	Denmark	360
4	Italy	590	29	Czech Republic	358
5	Canada	561	30	Estonia	349
6	Germany	546		Kuwait	349
7	Australia	524	32	Barbados	343
8	Malta	523	33	Qatar	335
9	Switzerland	516	34	Bahrain	325
10	Austria	503	35	Netherlands Antilles	321
11	France	495	36	Bulgaria	314
12	Portugal	471	37	Croatia	302
13	Belgium	468	38	Latvia	297
14	United States	465	39	Poland	294
15	Sweden	457	40	Hungary	274
16	Slovenia	456	41	Israel	234
17	Britain	451	42	Malaysia	225
18	Finland	446	43	Slovakia	222
19	Spain	445	44	South Korea	218
20	Japan	441	45	Serbia	181
21	Netherlands	429	46	Belarus	174
22	Norway	422	41	Suriname	171
23	Cyprus	406	48	Romania	149
24	Brunei	397	49	Costa Rica	146
25	Lithuania	383	50	Mexico	142

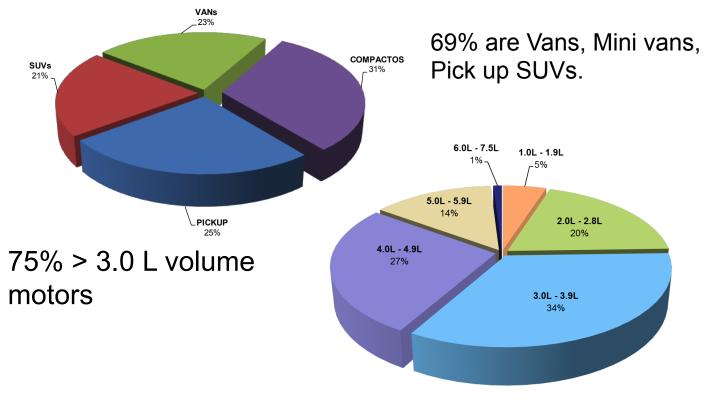

Source: "Pocket World in Figures", based on data from the International Road Federation

Entrance







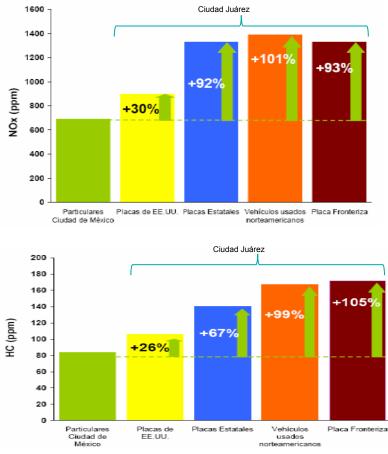


Imported Second Hand Vehicles Characteristics

Fuente: SEMARNAT

Environmental Costs

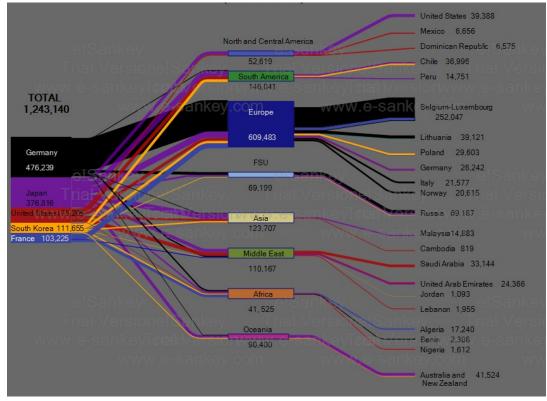
• High Emissions:


Emissions monitored through remote sensing device by Molina Center show to have:

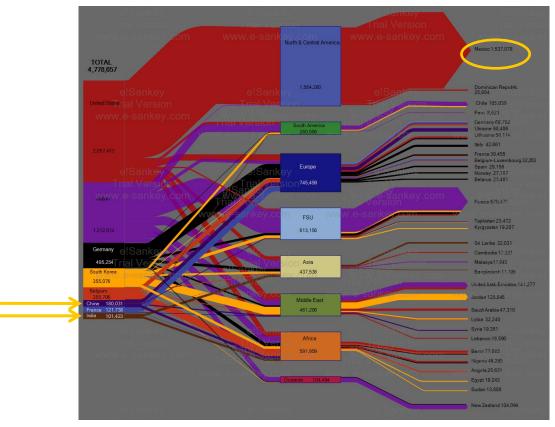
101 % more NOx,

99 % more HC, &

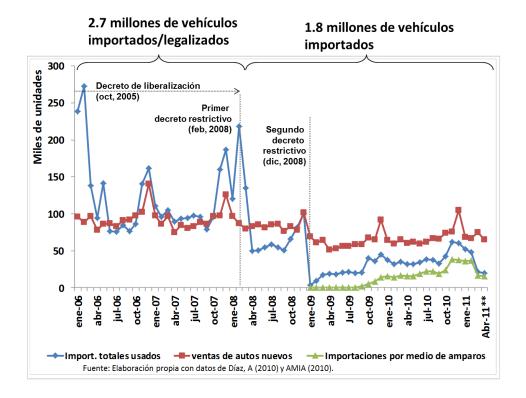
61 % more CO

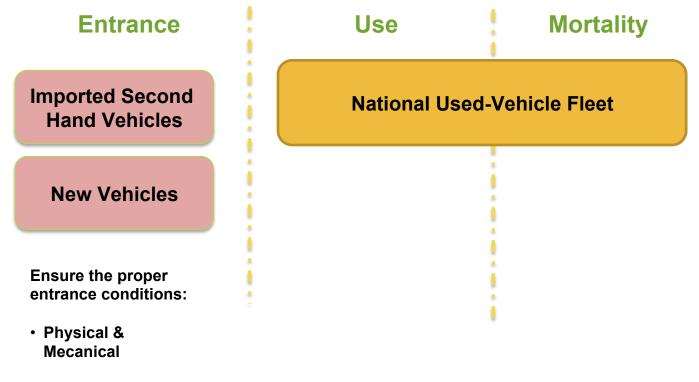

Compared to vehicles with the same conditions in Mexico City during 2005.

Fuente: Centro Mario Molina

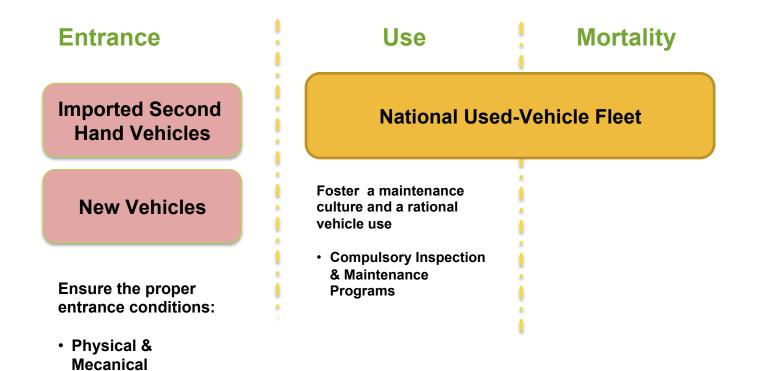

Global Flow Imported Second Hand Vehicles 1997

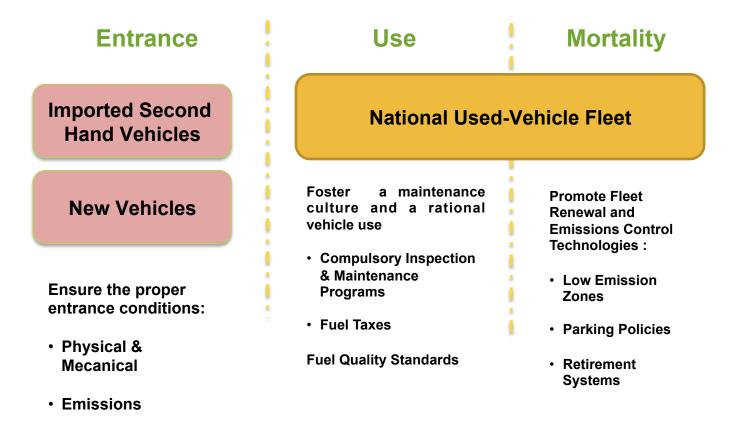
Gráfica: CTS EMBARQ para FIA Foundation y OECD con datos de IEA


... 10 Years Later

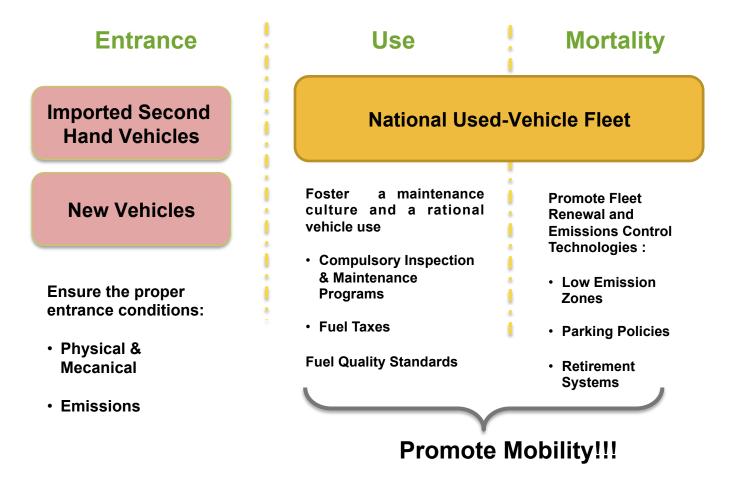


Gráfica: CTS EMBARQ para FIA Foundation y OECD con datos de IEA

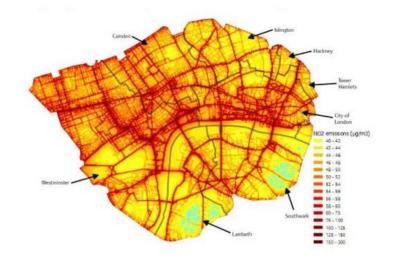

Imported Secondhand Vehicles Trend



• Emissions



• Emissions



Concentration vs Personal Exposure

Low Emission Zones

Main Global Results

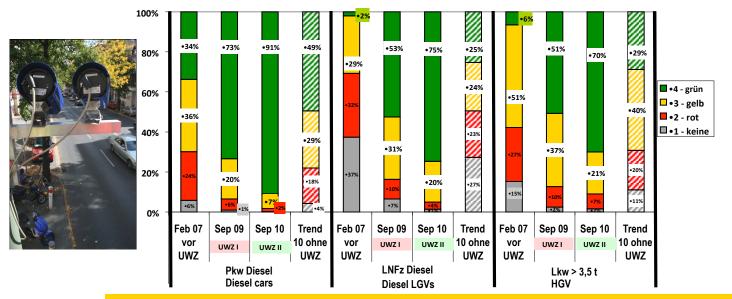
Table 2 Selected Air Quality and Emission Benefits of LEZs in European Cities¹⁷

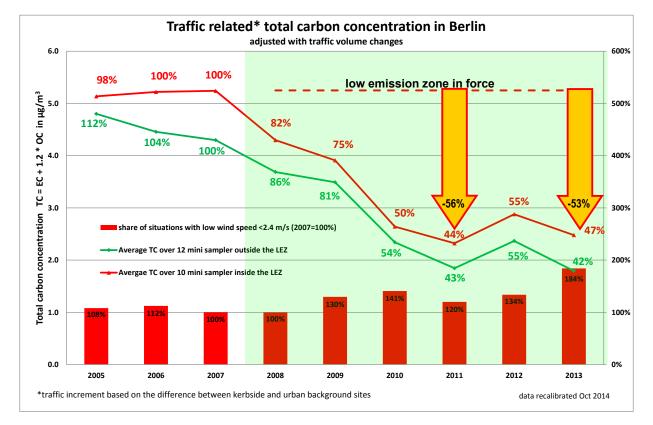
City / Region	Year of LEZ Introduction /	Indicator
	Measurement	
Berlin	2008 / 2009	-24% diesel PM
		-8% overall PM ₁₀
Munich	2006-7 / 2008 / 2009-10	-60% transport contribution
		from 1.1 to 0.5 μg/m ³ elemental carbon ¹⁸
Netherlands – 9 cities	2007 / 2008	up to 2µg/m ³ PM reduction
London	2008 / 2008-2012	-5.8% PM ₁₀
		-13% average annual PM ₁₀
		concentration ¹⁹
Cologne	2008	4µg/m ³ PM ₁₀ reduction
		1.2µg/m ³ NO ₂ reduction
Stockholm	1996 / 2000	-60% PM ₁₀
		-20% NO _x
Milan – emission-based	2011 / 2012	-19% PM10 ²⁰
congestion charge		-14% NOx
		-15% CO ₂

FUENTE: International Council on Clean Transportation

Berlin LEZ – impact analysis vehicle fleet composition

change of the vehicle fleet composition on the road (from number




plate recognition Frankfurter Allee)

decrease: cat.1 (no sticker) by 70-90 %; Cat 2 (red) by 50-80 % increase: category 4 (green) by factor 1,5 to 3

Berlin LEZ – impact analysis

Trend of total black carbon concentrations from traffic

Ixtapaluca, EDOMEX

Urban Planning!!

Imagen: Al Gore, Nuestra Elección

Mobility w/o TDM = Exercise w/o Diet!!!

SURVEY

- How did we do?
- Your feedback is important!

YOUR PARTICIPATION IS APPRECIATED

Thank You! Contact: transport@ledsgp.org

An audio recording of this webinar will be available at:

ledsgp.org/transport

